Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization

Open access


Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.

1. Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat. Mater. 6, 183–191. DOI: 10.1038/nmat1849.

2. Katsnelson, M.I. (2007). Graphene: carbon in two dimensions. Mater. Today 10, 20–27. DOI: 10.1016/S1369-7021(06)71788-6.

3. Loh, K.P., Bao, Q., Ang, P.K. & Yang, J. (2010). The chemistry of graphene. J. Mater. Chem. 20, 2277–2289. DOI: 10.1039/b920539j.

4. Loh, K.P., Bao, Q., Eda, G. & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024. DOI: 10.1038/nchem.907.

5. Lerf, A., He, H. & Forster, M. (1998). Structure of graphite oxide revisited. J. Phys. Chem. B. 102, 4477–4482. DOI: 10.1021/jp9731821.

6. Wang, S., Goh, B.M., Manga, K.K., Bao, Q., Yang, P. & Loh, K.P. (2010). Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene−Organic Hybrid Wire with Photovoltaic Properties. ACS Nano 4, 6180–6186. DOI: 10.1021/nn101800n.

7. Hu, H., Allan, C.C. K., Li, J., Kong, Y., Wang, X., Xin, J. H. & Hu, H. (2014). Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 7, 418–433. DOI: 10.1007/s12274-014-0408-0.

8. Muszynski, R., Seger, B. & Kamat, P.V. (2008). Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 112, 5263–5266. DOI: 10.1021/jp800977b.

9. Zhu, J., Zhu, T., Zhou, X, Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. &Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.

10. Ling, Q., Yang, M., Li, C.S. & Zhang, A.M. (2015). Preparation of Monolayered Ce-Fe Oxides Dispersed on Graphene and Their Superior Adsorptive Behavior, Fuller. Nanotub. Car. N. 23, 158–164. DOI: 10.1080/1536383X.2013.863759.

11. Li, C.X., Hu, C.G., Zhao, Y., Song, L., Zhang, J., Huang, R.D. & Qu, L.T. (2014). Decoration of graphene network with metal-organic frameworks for enhanced electrochemical capacitive behavior, Carbon 78, 231–242. DOI: 10.1016/j.carbon.2014.06.076.

12. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X. & Chen, G.N. (2009). Angew. Chem. Int. Ed. 121, 4879–4881. DOI: 10.1002/ange.200901479.

13. Huang, J., Zheng Q., Kim, J.K. & Li, Z. (2013). A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens. Bioelectron. 43, 379–383. DOI: 10.1016/j.bios.2012.12.056.

14. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian W. & Wei, F. (2010). A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 22, 3723–3728. DOI: 10.1002/adma.201001029.

15. Lim, S., Kang, B., Kwak, D., Lee, W.H., Lim, J.A. & Cho, K. (2012). Inkjet-Printed Reduced Graphene Oxide/Poly(VinylAlcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors. J. Phys. Chem. C. 116, 7520–7525. DOI: 10.1021/jp203441e.

16. Dixon, D., Lemonine, P., Hamilton, J., Lubarsky, G. & Archer, E. (2015). Graphene oxide-polyamide 6 nanocomposites produced via in situ polymerization. J. Thermoplast. Compos. 28, 372–389. DOI: 10.1177/0892705713484749.

17. Wojtoniszak, M., Urbas, K., Peruzynska, M., Kurzawski, M., Drozdzik, M. & Mijowska, E. (2013). Covalent conjugation of graphene oxide with methotrexate and its antitumor activity, Chem. Phys. Lett. 568, 151–156. DOI: 10.1016/j.cplett.2013.03.050.

18. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C. & Brus, L.E. (2009). Photochemical Reactivity of Graphene. J. Am. Chem. Soc. 131, 17099–17101. DOI: 10.1021/ja9043906.

19. Zhu, J., Zhu, T., Zhou, X., Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. & Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.

20. Shi, W., Zhu, J., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Zhang, H., Hng, H.H. & Yan, Q.Y. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21, 3422–3427. DOI: 10.1039/C0JM03175E.

21. Li, Y., Tang, L. & Li, J. (2009). Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846–849. DOI: 10.1016/j.elecom.2009.02.009.

22. Xie, L, Ling, X., Fang, Y., Zhang, J. & Liu, Z. (2009). Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 131, 9890–9891. DOI: 10.1021/ja9037593.

23. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F.Y.C., Yan, Q., Chen, P. & Zhang, H. (2009). In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846. DOI: 10.1021/jp903821n.

24. Liu, J.B., Fu, S.H., Yuan, B., Li, Y.L. & Deng, Z.X. (2010). Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281. DOI: 10.1021/ja100938r.

25. Shen, J.F., Shi, M., Li, N., Yan, B., Ma, H.W., Hu, Y.Z., & Ye, M.X. (2010). Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 3, 339–349. DOI: 10.1007/s12274-010-1037-x.

26. Scheuermann, G.M., Rumi, L., Steurer, P., Bannwarth, W. & Mulhaupt, R. (2009). Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270. DOI: 10.1021/ja901105a.

27. Johnson, J.L., Behnam, A., Pearton, S.J. & Ural, A. (2010). Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Adv. Mater. 22, 4877–4880. DOI: 10.1002/adma.201001798.

28. Si, Y.C. & Samulski, E.T. (2008). Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 20, 6792–6797. DOI: 10.1021/cm801356a.

29. Hassan, H.M.A., Abdelsayed, V., Khder, A., AbouZeid, K. M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A. (2009). Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837. DOI: 10.1039/b906253j.

30. Pavithra, C.L.P., Sarada, B.V., Rajulapati, K.V., Rao, T.N. & Sundararajan, G. (2014). A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness. Sci. Rep. 4, 4049. DOI: 10.1038/srep04049.

31. Ji, Z., Shen, X., Zhu, G., Zhou, H. & Yuan, A. (2012). Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 22, 3471–3477. DOI: 10.1039/C2JM14680K.

32. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X. & Sun, D.D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Adv. Funct. Mater. 20, 4175–4181. DOI: 10.1002/adfm.201001391.

33. Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Wang, D. & Jiang, L. (2010). Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 5, 590–596. DOI: 10.1021/nn102767d.

34. Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F. & Zhang, H. (2010). Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6, 307–312. DOI: 10.1002/smll.200901968.

35. Zhang, L.S., Jiang, L.Y., Yan, H.J., Wang, W.D., Wang, W., Song, W.G., Guo, Y.G. & Wan, L.J. (2010). Monodispersed SnO2 Nanoparticles on both Sides of Single Layer Graphene Sheets as Anode Materials in Li-ion Batteries. J. Mater. Chem. 20, 5462–5467. DOI: 10.1039/C0JM00672F.

36. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M. & Wei, F. (2010). Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833. DOI: 10.1016/j.carbon.2010.06.047.

37. Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y. & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714. DOI: 10.1039/b821416f.

38. Liang, J., Xu, Y., Sui, D., Zhang, L., Huang, Y., Ma, Y., Li, F. & Chen, Y. (2010). Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 114, 17465–17471. DOI: 10.1021/jp105629r.

39. Innocenzi, P., Malfatti, L., Lasio, B., Pinna, A., Loche, D., Casula, M.F., Alzari, V. & Mariani, A. (2014). Sol–gel chemistry for graphene–silica nanocomposite films. New J. Chem. 38, 3777–3782. DOI: 10.1039/C4NJ00535J.

40. Jiang, N., Xiu, Z., Xie, Z., Li, H., Zhao, G., Wang, W., Wu, Y. & Hao, X. (2014). Reduced graphene oxide–CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors. New J. Chem. 38, 4312–4320. DOI: 10.1039/C4NJ00152D.

41. Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., Pan, N., Yan, L., Wang, X. & Hou, J.G. (2010). Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4, 3033–3038. DOI: 10.1021/nn100134j.

42. Allen, M.J., Tung, V.C. & Kaner, R.B. (2009). Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.

43. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. DOI: 10.1021/nn1006368.

44. Sun, Z., Rong, Z., Wang, Y., Xia, Y., Du, W. & Wang, Y. (2014). Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide. RSC Adv. 4, 1874–1878. DOI: 10.1039/C3RA44962A.

45. Some, S., Kim, Y., Yoon, Y., Yoo, H.J., Lee, S., Park, Y. & Lee, H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3, 1–5. DOI:10.1038/srep01929.

46. Satish, B., Venkateswara, R.K., Shilpa, C.C.H. & Tejaswi, T. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebseilla and Staphylococus. Int. J. Adv. Biotechnol. Res. 4, 142–146.

47. Reich, S.S. & Thomsen, C. (2004). Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond. A 362, 2271–2288. DOI: 10.1098/rsta.2004.1454.

48. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prudhomme, R.K., Aksay, I.A. & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41. DOI: 10.1021/nl071822y.

49. Charlier, J.C., Eklund, P.C., Zhu, J. & Ferrari, A.C. (2008). Electron and phonon properties of graphene: their relationship with carbon nanotubes. Top Appl. Phys. 111, 673–709. DOI: 10.1007/978-3-540-72865-8_21.

50. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M. & Grossman, J.C. (2014). Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6, 151–158. DOI: 10.1038/nchem.1820.

51. Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P. & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198. DOI: 10.1021/nn102339t.

52. Hyde, T. (2008). Crystallite Size Analysis of Supported Platinum Catalysts by XRD. Platinum Metals Rev. 52, 129–130. DOI: 10.1595/147106708X299547.

53. Liu, S., Wang, J., Zeng, J., Ou, J., Li, Z., Liu, X. & Yang, S. (2010). „Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Pow. Sour. 195, 4628–4633. DOI: 10.1016/j.jpowsour.2010.02.024.

54. Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. (2011). Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. 115, 17009–17019. DOI: 10.1021/jp203741y.

55. Yuan, J.K., Li, W.N., Gomez, S. & Suib, S.L. (2005). Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Chem. Soc. 127, 14184–14185. DOI: 10.1021/ja053463j.

56. Yuan, J., Laubernds, K., Zhang, Q. & Suib, S.L. (2003). Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres. J. Am. Chem. Soc. 125, 4966–4967. DOI: 10.1021/ja0294459.

57. Li, Z., Wang, J., Wang, Z., Ran, H., Yang Li, Y., Han, X. & Yang, S. (2012). Synthesis of a porous birnessite manganese dioxide hierarchical structure using thermally reduced graphene oxide paper as a sacrificing template for supercapacitor application. New J. Chem. 36, 1490–1495. DOI: 10.1039/c2nj21052e.

58. Gui, Z., Gillette, E., Duay, J., Hu, J., Kim, N. & Lee, S. B. (2015). Co-electrodeposition of RuO2–MnO2 nanowires and the contribution of RuO2 to the capacitance increase. Phys. Chem. Chem. Phys. 17, 15173–15180. DOI: 10.1039/C5CP01814E.

59. Abdolhosseinzadeh, S., Asgharzadeh, H., & Kim, H.S. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7. DOI: 10.1038/srep10160.

60. Stankovich, S., Dikina, D.A., Pinera, R.D., Kohlhaasa, K. A., Kleinhammesc, A., Jiac, Y., Wuc, Y., Nguyenb, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.

61. Kalbac, M., Reina-Cecco, A., Farhat, H., Kong, J., Kavan, L. & Dresselhaus, M.S. (2010). The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 4, 6055–6063. DOI: 10.1021/nn1010914.

62. Casiraghi, C. (2009). Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi. 3, 175–177. DOI: 10.1002/pssr.200903135.

63. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C. & Sood, A.K. (2008). Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol. 3, 210–215. DOI: 10.1038/nnano.2008.67.

64. Heydrich, S., Hirmer, M., Preis, C., Korn, T., Eroms, J., Weiss, D. & Schüller, C. (2010). Scanning Raman spectroscopy of graphene antidot lattices: evidence for systematic p-type doping. Appl. Phys. Lett. 97, 043113-1. DOI: 10.1063/1.3474613.

65. Lee, J., Novoselov, K.S. & Shin, H.S. (2011). Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612. DOI: 10.1021/nn103004c.

66. Wang, W.X., Liang, S.H., Yu, T., Li, D.H., Li, Y.B. & Han, X.F. (2011). The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109, 07C501-07C501-3. DOI: 10.1063/1.3536670.

67. Iqbal, M.W., Singh, A.K., Iqbal, M.Z. & Eom, J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys.: Condens. Matter. 24, 335301–335308. DOI: 10.1088/0953-8984/24/33/335301.

68. Lucchese, M.M., Stavale, F., Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A. & Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597. DOI: 10.1016/j.carbon.2009.12.057.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 422 422 36
PDF Downloads 149 149 15