The oxidation of limonene at raised pressure and over the various titanium-silicate catalysts

Open access


This work presents the studies on the oxidation of limonene with hydrogen peroxide and tert-butyl hydroperoxide (TBHP) in the presence of : TS-2, Ti-Beta, Ti-MCM-41 and Ti-MWW catalysts, at the autogenic pressure and atmospheric pressure. The examination were performed at the following conditions: the temperature of 140°C (studies in the autoclave) and 80°C (studies in glass reactor), the molar ratio of limonene/oxidant (H2O2 or WNTB) = 1:1, the methanol concentration 80 wt%, the catalyst content 3 wt%, the reaction time 3 h and the intensity of stirring 500 rpm. The analysis of the results showed that in process not only 1,2-epoxylimonene was formed but also: 1,2-epoxylimonene diol, carveol, carvone and perillyl alcohol but for 1,2-epoxylimonene obtaining the better method was the method at the autogenic pressure and in the presence of TBHP.

1. Santa, A.M., Vergara, J.C., Palacio, L.A. & Echavarria, A. (2008). Limonene epoxidation by molecular sieves zinco-phosphates and zincochromates. Catal. Today 2008, 133–135, 80–86. DOI: 10.1016/j.cattod.2007.12.025.

2. Cagnoli, M.V., Casuscelli, S.G., Alvarez, A.M., Bengoa, J.F., Gallegos, N.G., Samaniego, N.M., Crivello, M.E., Ghione, G.E., Pérez, C.F., Herrero, E.R., Marchettia, S.G. (2005). “Clean” limonene epoxidation using Ti-MCM-41 catalyst. Appl. Catal. A: General 287(2), 227–235. DOI: 10.1016/j.apcata.2005.04.001.

3. Pena, A., Veiga, S., Sapelli, M., Martinez, N., Marquez, V., Dellacassa, E. & Bussi, J. (2012). Limonene oxidation by molecular oxygen under solvent-free conditions: The influence of peroxides and catalysts on the reaction rate. React. Kinet. Mech. Catal. 107, 263–275. DOI: 10.1007/s11144-012-0485-6.

4. Monteiro, J.L.F. & Veloso, C.O. (2004). Catalytic conversion of terpenes into fine chemicals. Top. Catal. 27, 169–180. DOI: 1022-5528/04/0200–0169/0.

5. Rodrigues, S.N., Fernandes, I., Martins, I.M., Mata, V.G., Barreiro, F. & Rodrigues, A.E. (2008). Microencapsulation of limonene for textile application. Ind. Eng. Chem. Res. 47 (12), 4142–4147. DOI: 10.1021/ie800090c.

6. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2512. DOI: 10.1021/cr050989d.

7. Arizaga, B., Leon, A., Burguen. N., Lopez, A., Paz, D., Martınez, N., Lorenzo, D., Dellacassa, E. & Bussi, J. (2007). A clean process for the production of oxygenated limonene derivatives starting from orange oil. J. Chem. Technol. Biotechnol. 82, 532–538. DOI: 10.1002/jctb.1690.

8. Nguyen, T.T.T., Nguyen Chau, D.K., Duus, F. & Le, T.N. (2013). Green synthesis of carvenone by montmorillonite-catalyzed isomerization of 1,2-limonene oxide. J. Org. Chem. 3, 206–209. DOI: 10.4236/ijoc.2013.33027.

9. Byrne, C.M., Allen, S.D., Lobkovsky, E.B. & Coates, G.W. (2004). Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 126, 11404–11405. DOI: 10.1021/ja0472580.

10. Almeida, A.A.A., Carvalho, R.B.F., Silva, O.A., Sousa, D.P. & Freitas, R.M. (2014). Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacol. Biochem. Behav. 118, 69–78. DOI: 10.1016/j.pbb.2014.01.006.

11. Almeida, A.A.A., Costa, J.P., Carvalho, R.B.F., Sousa, D.P. & Freitas, R.M. (2012). Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Res. 1448, 56–62. DOI: 10.1016/j.brainres.2012.01.070.

12. Gupta, A. & Myrdal, P.B. (2004). Development of a perillyl alcohol topical cream formulation. Int. J. Pharm. 26, 373–383. DOI: 10.1016/j.ijpharm.2003.09.026.

13. Gupta, A., Stratton, S.P. & Myrdal, P.B. (2005). An HPLC method for quantitation of perillyl alcohol in a topical pharmaceutical cream formulation. J. Pharm. Biomed. Anal. 37, 447–452. DOI: 10.1016/j.jpba.2004.02.039.

14. Bonon, A.J., Mandelli, D., Kholdeeva, O.A., Barmatova, M.V., Kozlov, Y.N. & Shulpin, G.B. (2009). Oxidation of alkene and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Appl. Catal. A General 365, 96–104. DOI: 10.1016/j.apcata.2009.05.060.

15. Berlini, Ch., Guidotti, M., Moretti, G., Psaro, R. & Ravasio, N. (2000). Catalytic epoxidation of unsaturated alcohols on Ti-MCM-41. Catal. Today 60, 209–225. DOI: 10.1016/S0920-5861(00)00338-2.

16. Cagnoli, M.V., Casuscelli, S.G., Alvarez, A.M., Bengoa, J.F., Gallegos, N.G., Crivello, M.E., Herrero, E.R. & Marchetti, S.G. (2005). Ti-MCM_41 silylation: development of a simple methodology for its estimation. Silylation effect on the activity and selectivity in the limonene oxidation with H2O2. Catal. Today 107–108, 397–403. DOI: 10.1016/j.cattod.2005.07.034.

17. Marino, D., Gallegos, N., Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., Casuscelli, S.G., Herrero, E.R. & Marchetti, S.G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods. Limonene epoxidation with H2O2. Catal. Today 133–135, 632–638. DOI: 10.1016/j.cattod.2007.12.111.

18. Chiker, F., Launay, F., Nogier, J.P. & Bonardet, J.L. (2003). Green epoxidation on Ti-mesoporous catalysts. Environ. Chem. Lett. 1, 117–120. DOI: 10.1007/s10311-003-0031-x.

19. Chiker, F., Launay, F., Nogier, J.P. & Bonardet, J.L. (2003). Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids. Green Chem. 5, 318–322. DOI: 10.1039/B300244F.

20. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts, Molecules 19, 19907–19992. DOI: 10.3390/molecules191219907.

21. Reddy, J.S., Kumar, R. & Ratnasamy, P. (1990). Titanium silicalite-2: Synthesis, characterization and catalytic properties. Appl. Catal. A: General 58, L1–L4. DOI: 10.1016/S0166-9834(00)82273-3.

22. Camblor, M.A., Corma, A. & Perez-Pariente, J. (1993). Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts. Zeolites 13, 82–87.

23. Grun, M., Unger, K.K., Matsumoto, A. & Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mater. 27, 207–216.

24. Wu, P., Tatsumi, T., Komatsu, T. & Yashima, T. (2001). A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J. Phys. Chem. B 105(15), 2897. DOI: 10.1021/jp002816s.

25. Wróblewska, A. (2008). Epoxidation of allylic compounds with hydrogen peroxide and in the presence of the titanium silicate catalyst. Szczecin, Poland: Publishing House of Technical University of Szczecin (in Polish).

26. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal A: General 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.

27. Wróblewska, A., Fajdek, A., Wajzberg, J. & Milchert E. (2009). Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. J. Hazard. Mater. 170, 405–410. DOI: 10.1016/j.jhazmat.2009.04.082.

28. Wróblewska, A., Fajdek, A., Milchert, E. & Grzmil, B. (2010). The Ti-MWW catalyst – its characteristic and catalytic properties in the epoxidation of allyl alcohol by hydrogen peroxide. Pol. J. Chem. Technol. 12(1), 29–34. DOI: 10.2478/v10026-010-0006-1.

29. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). The establishing the products in the process of glycerol obtaining during the epoxidation of allyl alcohol. Zawod. Lab. 40, 1192–1194. (in Russian).

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 316 32
PDF Downloads 110 110 8