Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets

Open access


This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide) copolymer (PTT-PTMO) based nanocomposites with 0.5 wt.% of clay (MMT), graphene nanoplatelets (GNP) and graphene oxide (GO) have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM) in order to present good dispersion without large aggregates. It was indicated that PTT-PTMO/GNP composite shows the highest crystallization temperature. Unlike the addition of GNP and GO, the introduction of MMT does not have great effect on the glass transition temperature of PTMO-rich soft phase. An addition of all three types of nanoplatelets in the nanocomposites caused the enhancement in tensile modulus and yield stress. Additionally, the cyclic tensile tests showed that prepared nanocomposites have values of permanent set slightly higher than neat PTT-PTMO.

1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. & Kamigaito, O. (1993). One-pot synthesis of nylon 6–clay hybrid. J. Polym. Sci. Pol. Chem. 31(7), 1755–1758. DOI: 10.1002/pola.1993.080310714.

2. Kawasumi, M. (2004). The discovery of polymer-clay hybrids. J. Polym. Sci. Pol. Chem. 42(7), 820–824. DOI: 10.1002/pola.10961.

3. De Paiva, L.B., Morales, A.R. & Valenzuela Díaz, F.R. (2008). Organoclays: Properties, preparation and applications. Appl. Clay. Sci. 42(1–2), 8–24. DOI: 10.1016/j.clay.2008.02.006.

4. Lee, A. & Lichtenhan, J.D. (1999). Thermal and viscoelastic property of epoxy–clay and hybrid inorganic–organic epoxy nanocomposites. J. Polym. Sci. Polym. Chem. Ed. 37(10), 1993–2001. DOI: 10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-Q.

5. Suh, D.J., Lim, Y.T. & Park, O.O. (2000). The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods. Polymer 41, 8557–8563. DOI: 10.1016/S0032-3861(00)00216-0.

6. Agag, T., Koga, T. & Takeichi, T. (2001). Studies on thermal and mechanical properties of polyimide±clay nanocomposites. Polymer 42, 3399–3408. DOI: 10.1016/S0032-3861(00)00824-7.

7. Chen, G., Liu, S., Chen, S. & Qi, Z. (2001). FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite. Macromol. Chem. Phys. 202(7), 1189–1193. DOI: 10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-M.

8. Lee, J.W., Lim, Y.T. & Park, O.O. (2000). Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym. Bull. 45(2), 191–198. DOI: 10.1007/s002890070048.

9. Ou, C.F., Ho, M.T. & Lin, J.R. (2004). Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with rganoclay. J. Appl. Polymer Sci. 91(1), 140–145. DOI: 10.1002/app.13158.

10. Kim, H., Abdala, A.A. & Macosko, C.W. (2010). Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530. DOI: 10.1021/ma100572e.

11. Slonczewski, J.C. & Weiss, P.R. (1958). Band structure of graphite. Phys. Rev. 109(2), 272. DOI: 10.1103/PhysRev.109.272.

12. Bunch, J.S., Verbridge, S.S., Alden, J.S., Van der Zande, A.M., Parpia, J.M., Craighead, H.G. & McEuen, P.L. (2008). Impermeable atomic membranes from graphene sheets. NanoLett. 8(8), 2458–2462. DOI: 10.1021/nl801457b.

13. Du, X., Skachko, I., Barker, A. & Andrei, E.Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnol. 3(8), 491–495. DOI: 10.1038/nnano.2008.199.

14. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. (2008). Superior thermal conductivity of single-layer graphene. NanoLett. 8(3), 902–907. DOI: 10.1021/nl0731872.

15. Lee, C., Wei, X., Kysar, J.W. & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388. DOI: 10.1126/science.1157996.

16. Jinhong, Y., Huang, X., Wu, C. & Jiang, P. (2011). Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE T. Dielect. El. In. 18(2), 478–484. DOI: 10.1109/TDEI.2011.5739452.

17. Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F. & Xue, Q. (2012). Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Europ. Polym. J. 48(6), 1026–1033. DOI: 10.1016/j.eurpolymj.2012.03.011.

18. Beckert, F., Friedrich, C., Thomann, R. & Mülhaupt, R. (2012). Sulfur-functionalized graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer Brushes and polystyrene nanocomposites. Macromolecules 45(17), 7783–7090. DOI: 10.1021/ma301379z.

19. Potts, J.R., Lee, S.H., Alam, T.M., An, J., Stoller, M.D., Piner, R.D. & Ruoff, R.S. (2011). Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon 49(8), 2615–2623. DOI: 10.1016/j.carbon.2011.02.023.

20. Zhang, F., Peng, X., Yan, W., Peng, Z. & Shen, Y. (2011). Non-isothermal crystallization kinetics of in situ Nylon 6/graphene composites by differential scanning calorimetry. J. Polym. Sci. Phys. 49(19), 1381–1388. DOI: 10.1002/polb.22321.

21. Wang, X., Hu, J., Song, L., Yang, H., Xing, W. & Lu, H. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21(12), 4222–4227. DOI: 10.1039/C0JM03710A.

22. Fabbri, P., Bassoli, E., Bon, S.B. & Valentini, L. (2012). Preparation and characterization of poly (butylene terephthalate)/graphene composites by in situ polymerization of cyclic butylene terephthalate. Polymer 53(4), 897–902. DOI: 10.1016/j.polymer.2012.01.015.

23. Istrate, O.M., Paton, K.R., Khan, U., O’Neill, A., Bell, A.P. & Coleman, J.N. (2014). Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249. DOI: 10.1016/j.carbon.2014.06.077.

24. Paszkiewicz, S. Roslaniec, Z., Szymczyk, A., Spitalsky, Z. & Mosnacek, J. (2012). Morphology and thermal properties of expanded graphite (EG)/poly(ethylene terephthalate) (PET) nanocomposites. Chemik 66(1), 26–30.

25. Paszkiewicz, S. Nachman, M., Szymczyk, A., Spitalsky, Z., Mosnacek, J. & Roslaniec, Z. (2014). Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites. Pol. J. Chem. Technol. 16(4), 45–50. DOI: 10.2478/pjct-2014-0068.

26. Tantis, I., Psarras, G.C. & Tasis, D. (2012). Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. eXPRESS Polym. Lett. 6(4), 283–292. DOI: 10.3144/expresspolymlett.2012.31.

27. Steurer, P., Wissert, R., Thomann, R. & Muelhaupt, R. (2009). Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327. DOI: 10.1002/marc.200800754.

28. Van der Schuur, M. & Gaymans, R. (2007). Influence of morphology on the properties of segmented block copolymers. Polymer 48(7), 1998–2006. DOI: 10.1016/j.polymer.2007.01.063.

29. Paszkiewicz, S. Szymczyk, A., Špitalski, Z., Mosnáček, J., Kwiatkowski, K. & Rosłaniec, Z. (2014). Structure and properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in situ polymerization. Europ. Polym. J. 50, 69–77. DOI: 10.1016/j.eurpolymj.2013.10.031.

30. Szymczyk, A. Paszkiewicz, S. & Roslaniec, Z. (2013). Influence of intercalated organoclay on the phase structure and physical properties of PTT–PTMO block copolymers. Polym. Bull. 70(5), 1575–1590. DOI: 10.1007/s00289-012-0859-y.

31. Spitalsky, Z., Danko, M. & Mosnacek, J. (2011). Preparation of functionalized graphene sheets. Current Oragan. Chem. 15(8), 1133–1150. DOI: 10.2174/138527211795202988.

32. Paszkiewicz, S., Szymczyk, A., Livanov, K., Wagner, H.D. & Roslaniec, Z. (2015). Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. eXPRESS Polym. Lett. 9(6), 509–524. DOI: 10.3144/express-polymlett.2015.49.

33. Pilawka, R., Paszkiewicz, S. & Rosłaniec, Z. (2014). Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J. Therm. Anal. Calorim. 115(1), 451–460. DOI: 10.1007/s10973-013-3239-4.

34. Szymczyk, A., Nastalczyk, J., Sablong, R.J. & Roslaniec, Z. (2011). The influence soft segment length on structure and properties of poly(trimetylene terephthalate)-block-poly(tetramethylene oxide) segmented random copolymers. Polym. Adv. Technol. 21(1), 72–83. DOI: 10.1002/pat.1858.

35. Pyda, M., Boller, A., Grebowicz, J., Chuah, H., Lebedev, B. V. & Wunderlich, B. (1998). Heat capacity of poly(trimethylene terephthalate). J. Polym. Sci. Phys. 36(14), 2499–2511. DOI: 10.1002/(SICI)1099-0488(199810)36:14<2499::AID-POLB4>3.0.CO;2-O.

36. Kim, H., Miura, Y. & Macosko, C.W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem. Mater. 22, 3144–3450. DOI: 10.1021/cm100477v.

37. Hernández, M., del Mar Bernal, M., Verdejo, R. & Ezquerra, T.A. (2012). Overall performance of natural rubber/graphene nanocomposites. Compos. Sci. Technol. 73, 40–46.

38. Lewis, S.L. (2007). Interface Control in Polymer Nanocomposites. Doctoral dissertation, Rensselaer Polytechnic Institute, Troy, New York, USA.

39. Martin-Gallego, M., Verdejo, R., Lopez-Manchado, M.A. & Sangermano, M. (2011). Epoxy–graphene UV-cured nanocomposites. Polymer 52(21), 4664–4669. DOI: 10.1016/j.polymer.2011.08.039.

40. Lee, J.K., Song, S. & Kim, B. (2012). Functionalized graphene sheets-epoxy based nanocomposites for cryotank composite applications. Polym. Compos. 33(8), 1263–1273. DOI: 10.1002/pc.22251.

41. Torre, L., Lelli, G. & Kenny, J.M. (2006). Synthesis and characterization of sPS/montmorillonite nanocomposites. J. Appl. Polym. Sci. 100(6), 4957–4963. DOI: 10.1002/app.23803.

42. Ilčíková, M., Mosnáček, J., Mrlík, M., Sedláček, T., Csomorová, K., Czaniková, K. & Krupa, I. (2014). Influence of surface modification of carbon nanotubes on interactions with polystyrene-b-polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 25 (11), 1293–1300. DOI: 10.1002/pat.3324.

43. Desai, T., Keblinski, P. & Kumar, S.K. (2005). Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 122(13), 134910–134918. DOI: 10.1063/1.1874852.

44. Bansal, A., Yang, H., Li, C., Cho, K., Benicewicz, B.C., Kumar, S.K. & Schadler, L.S. (2005). Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 4(9), 693–698. DOI: 10.1038/nmat1447.

45. Paszkiewicz, S. (2014). Polymer hybrid nanocomposites containing carbon nanoparticles. In situ synthesis and physical properties. Doctoral dissertation, West Pomeranian University of Technology, Szczecin, Poland.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 305 20
PDF Downloads 111 111 7