Different catalysts for new polyols for rigid PUR-PIR foams

Open access


New polyols were synthesized with 2-hydroxypropane-1.2.3-tricarboxylic acid and butane-1,4-diol (1.4-BD). The synthesis was performed using different catalysts in the amount of 0.1%. Used catalyst: Tyzor TPT, tin(II) acetate, sulfuric(IV) acid. The fourth reaction was conducted without the use of a catalyst. The polyols’ properties were evaluated with regards to the usefulness in rigid polyurethane-polyisocyanurate (PUR-PIR) foams (acid value, density, pH and solubility, FTIR spectra). Based on the research, it was evaluated that only the polyol synthesized using Tyzor TPT (E6) was useful in production of rigid PUR-PIR foams. Its hydroxyl number was 496 mgKOH/g and its viscosity was about 14 552 mPa · s. A series of five foams P6.1–P6.5 was produced with this polyol. Rigid foams test results indicated that the amount of this compound in the foam substantially affects its compressive strength, density and their retention. The foams have low brittleness values.

1. Paciorek-Sadowska, J. (2011). Studies the effect of boric acid derivatives and N, N-(dihydroxymethyl) urea on the characteristics of rigid polyurethane-polyisocyanurate foams, Kazimierz Wielki University, Bydgoszcz. [in Polish].

2. Chmiel-Szukiewicz, E. & Lubczak, J. (2006). Reactions of trithiocyanuric acid with oxiranes. IV. Analysis of the initial stages of the synthesis of polyetherols, J. Appl. Polym. Sci. 100, 4917. DOI: 10.1002/app.23608.

3. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Application of waste products from agricultural-food industry for production of rigid polyurethane-polyisocyanurate foams. J. Porous Mater. 18, 631. DOI: 10.1007/s10934-010-9419-8.

4. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Modification of Polymers. Status and prospects for 2011, Mater. Conf. Tempo, Wrocław. 129–134.

5. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2012). Fire-safe polyurethanes modified with new flame retardant. Chemik 66(4), 297–306.

6. Haponiuk, J.T., Strankowski, M. & Lazarewicz, T. (2003). DSC Study of Polyurethanes obtained from 4,4′-Bis(10-Hydroxydecaoxy)biphenyl. J. Therm. Anal. Calor. 74, 609. DOI: 10.1023/B:JTAN.0000005201.12216.dd.

7. Randall, D. & Lee, S. (editors) (2002). The polyurethanes book. Wiley Ltd.

8. Datta, J. & Rohn, M. (2007). Glycolysis of PUR waste. Vol. I. Glycolysis agents and catalysts. Polimery 52(7–8), 579. [in Polish].

9. Datta, J. & Rohn, M. (2007). Glycolysis of PUR waste. Vol. I. Purification and use of glycolysis. Polimery 52(9), 627. [in Polish].

10. Datta, J. & Pasternak, S. (2005). Oligouretanols obtained by glycolysis of polyurethane foam as intermediates for the preparation of cast urethane elastomers. Polimery 50(5), 352. [in Polish].

11. Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J. & Jaskółowski, W. (2010). New organoboron polyol for the production of rigid polyurethane-polyisocyanurate foams. Vol. II. Preparation of rigid polyurethane-polyisocyanurate foams using a new organoboron polyol. Polimery 55(2), 99. [in Polish].

12. Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J. & Kotarska, K. (2012). Fire-safe polyurethane matherials modified with new flame retardant – use of new flammability test methods. Inż. Apar. Chem. 51(3), 58. [in Polish].

13. Desroches, M., Maxime Escouvois, M., Auvergnea, R., Sylvain Caillola & Bernard Boutevina, C. B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym.Rev. 52(1), 38–79. DOI: 10.1080/15583724.2011.640443.

14. Zhang, J., Tang, J.J. & Zhang, J.X. (2015). Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol. Inter. J. Polym. Sci. Article ID 529235, 8 pages, http://dx.doi.org/10.1155/2015/529235 (on line).

15. Czub, P. (2006). The use of epoxidized soybean oil to control the viscosity of the epoxy composition. Polimery 51(11–12), 821–828. [in Polish].

16. Prociak, A. (2007). Cell structure and thermal conductivity of rigid polyurethane foams blown with cyclopentane in different moulds. Polyuret. Mag., 4, 218–24.

17. Prociak, A. (2008). Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils-based polyols. Polimery 53(3), 195–200.

18. Banik, I. & Sain, M.N. (2008). Water Blown Soy Polyol-Based Polyurethane Foams of Different Rigidities. J. Reinf. Plast. Compos. 27(4), 357–373. DOI: 10.1177/0731684407083955.

19. Septevani, A.A., Evans, D.A.C., Chaleat, C., Martin, D.J. & Annamalai, P.K. (2015). A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Industrial Crops & Products 66, 16–26. http://dx.doi.org/10.1016/j.indcrop.2014.11.053

20. Garrison, T.F., Kessler, M.R. & Larock, R.C. (2014). Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings. Polymer 55(4), 1004–1011. DOI: 10.1016/j.polymer.2014.01.014.

21. Lee, A. & Deng, Y. (2015). Green polyurethane from lignin and soybean oil through non-isocyanate reactions. European Polym. J., 63, 67–73. DOI: 10.1016/j.eurpolymj.2014.11.023.

22. Datta, J. & Głowińska, E. (2014). Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Industrial Crops & Products 61, 84–91. http://dx.doi.org/10.1016/j.indcrop.2014.06.050.

23. Zhang, M., Zhang, J., Chen, S. & Zhou, Y. (2014). Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym. Degrad. Stab., 110, 27–34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.08.009

24. Zarzyka, I. (2015). Oligomers with structural elements of imidazolidinetrione obtained from oxamic acid and oxamide: polyurethane foams modified by structural elements of imidazolidinetrione. J. Polym. Engine. 35(1), 1–10. DOI: 10.1515/polyeng-2013-0318.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 318 42
PDF Downloads 115 115 22