Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

Open access


Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II) ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II) ions.

1. Soleimani, M. & Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioresource Technol. 99, 5374–3583. DOI: 10.1016/j.biortech.2007.11.021.

2. Soares Maia, D.A., Alexandre de Oliveira, J.C., Toso, J.P., Sapag, K., Lopez, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L. & Zgrablich, G. (2011). Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861. DOI: 10.1007/s10450-011-9344-4.

3. Tsai, W.T., Chang, C.Y., Lee, S.L. & Wang, S.Y. (2001). Thermogravimetric analysis of corn cob impregnated with zinc chloride or preparation of activated carbon. J. Therm. Anal. Calorim. 63, 351–357. DOI: 10.1023/A:1010132207402.

4. Yagmur, E. (2012). Preparation of low cost activated carbons from various biomasses with microwave energy. J. Porous. Mater. 19, 995–1002. DOI: 10.1007/s10934-011-9557-7.

5. Asasian, N. & Kaghazchi, T. (2013). A comparison on efficiency of virgin and sulfurized agro-based adsorbents for mercury removal from aqueous systems. Adsorption 19, 189–200. DOI: 10.1007/s10450-012-9437-8.

6. Nowicki, P., Supłat, M., Przepiórski, J. & Pietrzak, R. (2012). NO2 removal on adsorbents obtained by pyrolysis and physical activation of corrugated cardboard. Chem. Eng. J. 195–196, 7–14. DOI: 10.1016/j.cej.2012.04.073.

7. Amaya, A., Píriz, J., Tancredi, N. & Cordero, T. (2007). Activated carbon pellets from eucalyptus char and tar TG studies. J. Therm. Anal. Calorim. 89, 987–991. DOI: 10.1007/s10973-006-7685-0.

8. Nowicki, P., Skibiszewska, P. & Pietrzak, R. (2013). NO2 removal on adsorbents prepared from coffee industry waste materials. Adsorption 19, 521–528. DOI: 10.1007/s10450-013-9474-y.

9. Alcañiz-Monge, J. & Illán-Gómez, M.J. (2008). Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption 14, 93–100. DOI: 10.1007/s10450-007-9056-y.

10. Khalil, S.H., Aroua, M.K. & Wan Daud, W.M.A. (2012). Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing. Chem. Eng. J. 183, 15–20. DOI: 10.1016/j.cej.2011.12.011.

11. Skubiszewska-Zięba, J., Sydorchuk, V.V., Gunko, V.M. & Leboda, R. (2011). Hydrothermal modification of carbon adsorbents. Adsorption 17, 919–927. DOI: 10.1007/s10450-011-9369-8.

12. Budarin, V.L., Clark, J.H., Gorlova, A.A., Boldyreva, N.A. & Yatsimirsky, V.K. (2000). Chemical modification of activated carbons. J. Therm. Anal. Calorim. 62, 349–352. DOI: 10.1023/A:1010156002389.

13. Tamai, H., Shiraki, K., Shiono, T. & Yasuda, H. (2006). Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine. J. Colloid. Interf. Sci. 295, 299–302. DOI: 10.1016/j.jcis.2005.08.012.

14. Sousa, J.P.S., Pereira, M.F.R. & Figueiredo, J.L. (2013). Modified activated carbon as catalyst for NO oxidation. Fuel Process. Technol. 106, 727–733. DOI: 10.1016/j.fuproc.2012.10.008.

15. Bandosz, T.J. & Ania, C.O. (2006). Surface chemistry of activated carbons and its characterization. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 105–229). Amsterdam, Holland: Elsevier Ltd.

16. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M. & Tsyba, M.M. (2007). Phosphoric acid activation-functionalization and porosity modification. Appl. Surf. Sci. 253, 5736–3740. DOI: 10.1016/j.apsusc.2006.12.034.

17. Pradhan, B.K. & Sandle, N.K. (1999). Effect of different oxidizing agent treatments on the surface properties of activated carbon. Carbon 37, 1323–1332. DOI: 10.1016/S0008-6223(98)00328-5.

18. Yang, C.M. & Kaneko, K. (2002). Adsorption properties of iodine-doped activated carbon fiber. J. Colloid. Interface. Sci. 246, 34–39. DOI: 10.1006/jcis.2001.8012.

19. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). The influence of silver on the physicochemical and catalytic properties of activated carbons. Chem. Eng. J. 189–190, 422–30. DOI: 10.1016/j.cej.2012.02.069.

20. Park, S.J. & Shin, J.S. (2004). Preparation and characterization of activated carbon/Cu catalyst by electroless copper plating for removal of NO. J. Porous. Mater. 11, 15–19. DOI: 10.1023/B:JOPO.0000020432.04712.b8.

21. Pietrzak, R., Wachowska, H. & Nowicki, P. (2006). Preparation of nitrogen-enriched activated carbons from brown coal. Energ. Fuel. 20, 1275–1280. DOI: 10.1021/ef0504164.

22. Nowicki, P., Pietrzak, R. & Wachowska, H. (2009). Influence of metamorphism degree of the precursor on preparation of nitrogen enriched activated carbons by ammoxidation and chemical activation of coals. Energ. Fuel. 23, 2205–2212. DOI: 10.1021/ef801094c.

23. Nowicki, P. & Pietrzak, R. (2011). Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on their NO2 sorption capacity under dry conditions. Chem. Eng. J. 166, 1039–1043. DOI: 10.1016/j.cej.2010.11.101.

24. Boehm, H.P., Diehl, E., Heck, W. & Sappok, R. (1964). Surface oxides of carbon, Angew. Chem. Int. Ed. Engl. 3, 669–677. DOI: 10.1002/anie.196406691.

25. Kaźmierczak, J., Nowicki, P. & Pietrzak, R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 19, 273–281. DOI: 10.1007/s10450-012-9450-y.

26. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). Thermal analysis of activated carbons modified with silver metavanadate. Thermochim. Acta 541, 42–48. DOI: 10.1016/j.tca.2012.04.026.

27. Bimer, J., Sałbut, P.D., Berłożecki, S., Boudou, J.P., Broniek, E. & Siezieniewska, T. (1998). Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel 77, 519–525. DOI: 10.1016/S0016-2361(97)00250-0.

28. Choma, J. & Jaroniec, M. (2006). Characterization of nanoporous carbons by using gas adsorption isotherms. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 107–158). Amsterdam, Holland: Elsevier Ltd.

29. Biniak, S., Szymański, G., Siedlewski, J. & Świątkowski, A. (1997). The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810. DOI:10.1016/S0008-6223(97)00096-1.

30. Bansal, R.Ch. & Goyal, M. (2005). Activated Carbon Adsorption. Boca Raton, USA: Taylor & Francis Group.

31. Szymański, G.S., Karpiński, Z., Biniak, S. & Świątkowski, A. (2002). The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639. DOI: 10.1016/S0008-6223(02)00188-4.

32. Zielke, U., Huttinger, K.J. & Hoffman, W.P. (1996). Surface-oxidized carbon fibres: I. surface structure and chemistry. Carbon 34, 983–998. DOI: 10.1016/0008-6223(96)00032-2.

33. Barton, S.S., Evans, M.I.B., Halliop, E. & MacDonald, J.A.F. (1997). Anodic oxidation of porous carbon. Langmuir 13, 1332–1336. DOI: 10.1021/la9509413.

34. Biniak, S., Pakuła, M. & Świątkowski, A. (2001). Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. In L.R. Radovic, (ed.). Chemsitry and physics of carbon (pp. 125–226). New York, USA: Marcel Dekker,

35. Bandosz, T.J. (2009). Surface chemistry of carbon materials. In F. Serp & J.L. Figueiredo (eds.) Carbon materials for catalysis (pp. 45–92). Hoboken, USA: John Wiley & Sons Inc.

36. Boehm, H.P. (2008). Surface chemical characterization of carbons from adsorption studies. In E.J. Bottani & J.M.D. Tascon (eds.) Adsorption by carbons (pp. 301–328). Oxford, England: Elsevier.

37. Awual, M.R. (2015). A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266, 368–375. DOI:10.1016/j.cej.2014.12.094.

38. Awual, M.R. & Hasan, M.M. (2015). Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sensor. Actuat. B-Chem. 206, 692–700. DOI:10.1016/j.snb.2014.09.086.

39. Awual, M.R., Yaita, T. & Okamoto, Y. (2014). A novel ligand based dual conjugate adsorbent for cobalt(II) andcopper(II) ions capturing from water. Sensor. Actuat. B-Chem. 203, 71–80. DOI:10.1016/j.snb.2014.06.088.

40. Rio, S., Faur-Brasquet, C., Coq, L.L., Courcoux, P. & Cloirec, P.L. (2005). Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation – application to air and water treatments. Chemosphere 58, 423–427. DOI: 10.1016/j.chemosphere.2004.06.003.

41. Liu, C., Bai, R. & Ly, Q.S. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 42, 1511–1522. DOI: 10.1016/j.watres.2007.10.031.

42. Liu, A.M., Hidajat, K., Kawi, S. & Zhao, D.Y. (2000). A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 1145–1146. DOI: 10.1039/B002661L.

43. Cochrane, E.L., Lu, S., Gibb, S.W. & Villaescusa, I. (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J. Hazard. Mater. 137, 198–206. DOI: 10.1016/j.jhazmat.2006.01.054.

44. Hu, X., Liu, Y., Wang, H., Chen, A., Zeng, G., Liu, S., Guo, Y., Hu, X., Li, T., Wang, L., Zhou, L. & Liu, S. (2013). Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 108, 189–195. DOI: 10.1016/j.seppur.2013.02.011.

45. Bois, L., Bonhomme, A., Ribes, A., Pais B., Fraffin, G. & Tessier, F. (2003). Functionalized silica for heavy metal ions adsorption. Colloid. Surf. A: Physicochem. Eng. Asp. 221, 221–230. DOI: 10.1016/S0927-7757(03)00138-9.

46. Awual, M.R., Ismael, M., Yaita, T., El-Safty, S.A., Shiwaku, H., Okamoto, Y. & Suzuki, S. (2013). Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 222, 67–76. DOI: 10.1016/j.cej.2013.02.042.

47. Awual, M.R., Yaita, T., El-Safty, S.A., Shiwaku, H., Suzuki, S. & Okamoto, Y. (2013). Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330. DOI: 10.1016/j.cej.2013.02.016.

48. Awual, M.R., Ismael, M., Khaleque, M.A. & Yaita, T. (2014). Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. J. Ind. Eng. Chem. 20, 2332–2340. DOI: 10.1016/j.jiec.2013.10.009.

49. Awual, M.R., Rahman, I.M.M., Yaita, T., Khaleque, M.A. & Ferdows, M. (2014). pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 151 13
PDF Downloads 56 56 9