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In this paper we report a study on infl uence of radio-frequency (RF) plasma induced with electron cyclotron 
resonance (ECR) on multiblock copolymer containing butylene terephthalate hard segments (PBT) and butylene 
dilinoleate (BDLA) soft segments.  The changes in thermal properties were studied by DSC. The changes in 
wettability of PBT-BDLA surfaces were studied by water contact angle (WCA). We found that ECR-RF plasma 
surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA 
after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confi rmed 
that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to 
minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be 
benefi cial for increased cell adhesion in future biomedical applications of these materials.
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INTRODUCTION

     Plasma modifi cation is used in many different techno-
logical processes for improving physical and/or chemical 
properties of material surface. Usually, plasma modifi ca-
tion can be used for adhesion changes, improvement of 
hydrophilic or hydrophobic properties or immobilization 
of molecules on the material surface. Plasma deposition, 
plasma implantation or plasma polymerization are only 
few of many known plasma applications1–5. Plasma surface 
modifi cation is well known and widely used, especially in 
bioengineering applications like improving of membrane 
separation or regeneration6, avoiding biofouling7, for 
proteins separation8 or for tissue engineering9–11. 

Surface characteristics play a vital role in the func-
tioning of different biomaterials since they are directly 
infl uencing biological response. The key physical pro-
perties of a biomaterial can be retained while only the 
outermost surface is modifi ed to tailor the biointerac-
tions. Hence, if surface modifi cation is properly carried 
out, the mechanical properties and functionality of the 
device will be unaffected, but the tissue interface-related 
biocompatibility can be improved12.

To follow this direction, we used plasma method for 
surface treatment of poly(aliphatic/aromatic-ester)s 
(PED). PED copolymers are composed of semicrystalli-
ne poly(ethylene terephthalate) (PET) or poly(butylene 
terephthalate) (PBT) hard segments and amorphous 
fatty acid, e.g. dimerized linoleic acid (DLA) sequen-
ces as soft segment components. These materials have 
already shown excellent biocompatibility in vitro and in 
vivo13–16. PED copolymers are relatively hydrophobic 
materials due to the presence of long aliphatic fatty acid 
sequences in soft segments. Moreover, short sequences 
of butylene terephthalate (PBT) result in low surface 
free energy and also poor wettability. Such hydrophobic 
character of a polymer can be a limitation for tissue 
engineering applications because it can lead to a low 
initial cell seeding density, and slow cell growth due 
to insuffi cient adsorption of cell culture medium and 

lack of specifi c cell-material interactions17, 18. Therefore, 
great challenge is hydrophilization of PED copolymer 
surface for advanced applications in tissue engineering.  
Hence, basic process parameters for successful surface 
modifi cation and type of gas plasma for new material 
should be selected. It is already known, for example, 
that oxygen19 and nitrogen20 containing plasma has been 
shown to increase endothelial cell attachment.

In this paper, the type of gaseous plasma and treatment 
time are evaluated for plasma-PED material interactions, 
including surface wettability, surface morphology, and 
thermal properties. 

MATERIAL

Multiblock poly(aliphatic/aromatic–ester)s containing 
hard segments of poly(butylene terephthalate) (PBT) 
and soft segments of butylene ester of dimerized fatty 
acid (BDLA) were prepared using dimethyl terephtha-
late (DMT, ZWCh “ELANA”), 1,4-butanediol (1,4-BD, 
BASF), magnesium titanate catalyst and  dimerized fatty 
acid (dilinoleic acid, DLA – Croda, the Netherlands).  
Details about preparation of the materials can be found 
in13. Multiblock copolymer, here abbreviated as PBT-
-BDLA, containing 26 wt% hard segment and 74 wt% 
soft segments was prepared and used for plasma modi-
fi cation. Polymer, at such hard to soft segments content, 
is fl exible and transparent material (tensile strength: 3,6 
MPa, elongation at break: 770%14, 15. Chemical structure 
of PBT-BDLA copolymer is presented in Figure 1. 

Figure 1. Chemical structure of multiblock poly(butylene 
terephthalate-co-butylene dilinoleate)(PBT-BDLA)
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Methods
Polymeric samples in form of thin foils (0.5 mm thick, 

the thickness typical for physical and mechanical test-
ing) prepared by hot press melting between tefl on plates 
at a temperature 10° higher than the melting point of 
a polymer were exposed to low–pressure plasma using 
PECVD apparatus (Roth&Rau, Germany). Used equip-
ment allowed generation of radio-frequency (RF) plasma 
induced with electron cyclotron resonance (ECR). 

All tests were performed at frequency of 13 MHz. 
The intensity of the RF – plasma was set to 300 W, 
bias values between 200–300 V and pressure in range 
of 1.74–2.32 x 10–3 mbar.

Under these conditions, surface modifi cation of copo-
lymer was carried-out using different gas atmospheres 
as oxygen (O2), nitrogen (N2) and nitrogen/oxygen (70% 
N2, 30% O2, here abbreviated as N2O2). The gas fl ux was 
set to 60 cm3/min. The treatment time varied between 
60 and 180 seconds. Samples were cleaned with 70% 
ethanol and then vacuum dried at 40°C for 2 hours 
before plasma treatment.

Contact angle measurements were performed with Data 
Physics OCAH230 apparatus using sessile drop method. 

Samples of the neat copolymer and after exposure to 
different plasma were characterized by Fourier trans-
form attenuated total refl ection infrared spectroscopy 
(ATR-FTIR). Spectra were obtained using the Bruker 
Vertex70 Fourier Transform Infrared Spectrometer 
scanning between 600 and 4000 cm–1. 

Differential scanning calorimetry (DSC) scans were 
performed with a TA Instruments (DSC Q100) appa-
ratus. The samples were dried in vacuum at 70°C, and 
then kept in a desiccator. The process was carried out 
in a triple cycle: fi rst heating, then cooling, and second 
heating in the temperature range from –120°C to 30°C 
higher than melting point of each copolymer. The rate of 
heating and cooling was 10°C min–1. The glass transition 
temperature (Tg) was determined from the temperature 
diagrams as the mid point on the curve infl ection. 

Scanning electron microscope (SEM) JEOL JSM-840A 
was used to study surface topography before and after 
plasma treatment.

RESULTS AND DISCUSSION

It is already known that the plasma treatment affects 
only the utmost layer of the surface therefore it is not 
an easy task to observe surface chemical modifi cation by 
FT IR analysis. However, in the case of heavy surface 
oxidation (loss of electrons) of polymers their infrared 
spectra may present some new characteristics. Figure 2 
shows FTIR spectrum of the neat copolymer. Two char-
acteristic peaks from carbonyl group C=O (a strong 
signal at 1740 cm–1) and the signals at 1300 and 1099 
cm–1 ascribed to stretching vibrations of the C-O bonds 
coupled with an aromatic ring can be detected thus 
confi rming the formation of ethylene terephthalate units 
and the presence of hydroxyl-ended chains containing 
aliphatic/aromatic ester.

The comparison of FT-IR spectra for the neat sample 
(without plasma modifi cation) and materials after plasma 
treatment showed any noticeable changes in chemical 
composition, independently of used gas atmosphere. The 

only exception was sample after N2O2 modifi cation for 
60 s (Figure 3) because of slightly broadened peak ap-
pearing at 3300 cm–1 which corresponds to an increase 
in the hydroxyl groups (–OH stretching at 3380 cm–1) 
formed during plasma treatment. These changes can also 
be ascribed to secondary amine groups (N-H stretch at 
3400 cm–1). It is diffi cult, however, to determine the 
exact type of nitrogen functional groups, since there is 
a problem with strong overlapping of oxygen- and ni-
trogen- containing functionalities. Similar changes after 
nitrogen plasma treated of PET fi lms were observed by 
Vesel et al.19.

Figure 2. ATR FT-IR spectra of PBT-BDLA multiblock copoly-
mer before plasma treatment

Table 1. Water contact angle of PBT-DLA material after treat-
ment with different gas plasma

Figure 3. ATR FT-IR spectra of the PBT-BDLA material after 
N2O2 plasma treatment for 60 s

PBT-BDLA multiblock copolymer, which consists of 
high amount of soft segments (74 wt.%) is hydrophobic 
and therefore relatively high average dynamic contact 
angles versus water were found for this material, i.e. 
about 90° (Table 1). 

Water contact angles (CA) are important macroscopic 
parameters characterizing surface wettability. Strong 
decrease of CA-values was observed for almost all kind 
of gas atmosphere and modifi cation time. However, the 
lowest values of CA were found after 60 s treatment. 
With prolonged exposure time, the surface become again 
more hydrophobic as indicated by increasing water con-
tact angle values, especially for N2O2 and N2 atmosphere. 
Functional groups formed on the plasma-treated surface 
are not stable with time, as the surface tends to recover 
to its untreated state. Thus, the surface loses its hydro-
philic character and becomes hydrophobic. The lowest 
values of water contact angle, and almost constant for 
the whole treatment time (180 s) were found for samples 
treated with O2 (Fig. 4). It seems that oxygen plasma 
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imparts the best and the most stable hydrophilicity to 
PBT-BDLA surface.

with N2 and N2O2 shows increasing CA with increasing 
treatment time, especially for N2O2 where FT-IR spectra 
clearly indicated new bond formation (Fig. 3).  

In case of oxygen plasma surface modifi cation, the 
modifi cation time was quite long and could be reduced 
down to 10–50 s. Similar conclusions are given by Cioffi  
et al.21 They showed that modifi cation time longer than 
20 s at 50 W intensity do not have any infl uence on 
contact angle value and longer time of modifi cation do 
not cause further reduction of contact angle.   

The effect of the plasma treatment on the surface 
properties was studied also with SEM (Fig. 5). As can 
be seen from Figure 5a, reference material (the neat 
PBT-BDLA copolymer) shows fl at surface with some 
impurities on it. Despite of these impurities, PBT-BDLA 
copolymer after N2O2 plasma shows slightly crimped 
surface. Polymer surface topography after O2 (Fig. 5c) 
and N2 (Fig. 5d) treatment shows rather fl at and smo-
oth surface (some cracks are visible on Figure 5c but 
these are probably from the Tefl on mould used for fi lm 
preparation). However, they can also come from local 
stresses induced by the plasma.

Table 2 summarizes the thermal properties of PBT-
-BDLA material. The glass transition temperature, Tg, 
of soft segments is relatively low (–51.1°C) and is shifted 
toward higher temperatures after plasma treatment (up 
to –33°C after N2 and O2 treatment). It is also interesting 
to notice that melting point ascribed to hard segments, 

Figure 4. Water contact angle changes versus treatment time

Figure 5. SEM pictures of non-modifi ed material (a), after N2O2 (b), O2 (c) and N2 (d) plasma treatment for 60 s

It should be mentioned that relatively stable increase 
of surface hydrophilicity after oxygen plasma modifi cation 
as determined by the water contact angle measurements 
is due to a “saturation” of a surface with highly hydro-
philic groups such as carbonyl or hydroxyl (–COOH, 
–OH)6 rather than with more hydrophobic groups such 
as amide which are regarded as compounds with low 
water solubility. Therefore, polymer surface treatment 
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modifi cation time. ATR-FTIR analysis showed no sig-
nifi cant changes in chemical composition of the samples 
after plasma treatment with the only exception for N2O2 
treatment for 60 s which led to polar groups formation. 
Plasma modifi cation with different gas atmospheres is 
effective enough to change surface wettability. It allowed 
reducing contact angle from 90o down to 45o. We found 
that the surface energy (expressed by the water contact 
angle) achieved by N2 and N2O2 plasma treatment was 
not stable. Only for O2 plasma, a permanent changes 
on surface energy were observed. Plasma treatment also 
affected the microphase separation thus decreasing the 
difference between glass transition temperature of soft 
segments and meting temperature of hard segments. An 
investigated PBT-BDLA copolymer thus can be modi-
fi ed preferentially with oxygen plasma to obtain stable 
hydrophilization of polymer surface. 
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