Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

Open access

Abstract

The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples). The studies were also supported by such methods as: scanning electron microscopy (SEM), Raman spectroscopy (RS), atomic force microscopy (AFM) and thermogravimetry (TG). Moreover, during the experiments also the elemental analyses (EA) of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide) were performed.

1. Eda, G. & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415. DOI: 10.1002/adma.200903689.

2. Stankovich, S., Dikin, D.A., Piner, R.D.,. Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565. DOI:10.1016/j.carbon.2007.02.034.

3. Wong, C., Jankovsky, O., Sofer, Z. & Pumera, M. (2014). Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508–517. DOI: 10.1016/j.carbon.2014.05.056.

4. Drewniak, S., Pustelny, T., Muzyka, R., Konieczny, G. & Kałużyński, P. (2014). The effect of oxidation and reduction processes on physicochemical properties of graphite oxide and reduced graphene. Photo. Lett. Pol. 6(4) 130–132. DOI: 10.4302/plp.2014.4.06.

5. McAllister, M., Li, J., Adamson, D., Schniepp, A.A., Liu, J., Herrera-Alonso, M., Milius, D., Car, R., Prud’homme, R. & Aksay, A. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite., Chem. Mater. 19(18), 4396–4404. DOI: 10.1021/cm0630800.

6. Lipińska, L., Koziński, R., Jagiełło J., Librant, K., Aksienionek, M. & Wiliński, Z. (2012). Chemical methods of obtaining graphene flakes. Chem. Przem. 5, 16–19. (In Polish).

7. Pacile, D., Meyyer, J., Rodriguez, A., Papagno, M., Gomez-Navarro, C., Sundaram, R., Burghard, M., Kern, K., Carbone, C. & Kaiser, U. (2011). Electronic properties and atomic structure of graphene oxide membranes. Carbon 49, 966–972. DOI: 10.1016/j.carbon.2010.09.063.

8. Sheng, K., Xu, Y., Li, C. & Shi, G. (2011). High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26(1), 9–15. DOI: 10.1016/S1872-5805(11)60062-0.

9. Schwamb, T., Burg, B.R., Schirmer, N.C. & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704(5pp). DOI: 10.1088/0957-4484/20/40/405704.

10. Basu, S. & Bhattacharyya. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical. 173, 1–21 DOI: 10.1016/j.snb.2012.07.092.

11. Drewniak, S., Pustelny, T., Muzyka, R., Stolarczyk, A. & Konieczny, G. (2015). Investigations of selected physical properties of graphite oxide and thermally exfoliated/reduced graphene oxide in the aspect of their applications in photonic gas sensors. Photo. Lett. Pol. 7(2), 47–49. DOI: 10.4302/plp.2015.2.06.

12. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L. & Zhang, Y. (2014). Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 1–9. DOI: 10.1088/0957-4484/25/2/025502.

13. Pustelny, T., Procek, M., Maciak, E., Stolarczyk, A., Drewniak, S., Urbanczyk, M., Setkiewicz, M., Gut, K. & Opilski, Z. (2012). Gas sensors based on nanostructures of semiconductors ZnO and TiO2. Bull. Pol. Ac.: Tech. 60 (4), 853–859. DOI: 10.2478/v10175-012-0099-1.

14. Pustelny, T., Setkiewicz, M., Drewniak, S., Maciak, E., Stolarczyk, A., Procek, M., Urbanczyk, M., Gut, K., Opilski, Z., Pasternak, I. & Strupinski, W. (2012). The Influence of Humidity on the Resistance Structures with Graphene Sensor Layer. Acta Phy. Polon. A 122, 870–873. ISSN: 05874246.

15. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625. DOI: 10.1126/science.287.5453.622.

16. Dobrzanska-Danikiewicz, A.D., Cichocki, D., Łukowiec, D. & Wolany, W. (2014). Carbon nanotubes synthesis time versus their layer height. Arch. Mater. Sci. Engine. 69(1), 5–11. ISSN 18972764

17. Pustelny, T., Drewniak, S., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M. Gut, K. Opilski, Z., Jagiello, J. & Lipinska. L. (2013) The sensitivity of sensor structures with oxide graphene exposed to selected gaseous atmospheres. Bull. Pol. Ac.: Tech. 61(3), 705–710. DOI: 10.2478/bpasts-2013-0075.

18. Drewniak, S., Pustelny, T., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M., Opilski, Z., Jagiello, J. & Lipinska, L. (2013). Investigations of SAW Structures with Oxide Graphene Layer to Detection of Selected Gases. Acta Phys. Polon. A 124(3), 402–405. DOI: 10.12693/APhysPolA.124.402.

19. Wang, S., Geng, Y., Zheng, Q. & Kim, J. (2010). Fabrication of highly conducting and transparent graphene films. Carbon 48, 1815–1823. DOI: 10.1016/j.carbon.2010.01.027.

20. Dikin, D., Stankovich, S., Zimney, E., Piner, R., Dommett, G., Evmenenko, G. &Ruoff, R. (2007). Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460. DOI: 10.1038/nature06016.

21. Hummers, W.S. (1954). U.S. Patent No. 2,798,878. Detroit, Mich.: United States Patent Office.

22. Eigler, S., Dotzer, C. & Hirsch, A. (2012). Visualization of defect densities in reduced graphene oxide. Carbon 50(10), 3666–3673. DOI: 10.1016/j.carbon.2012.03.039.

23. Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C. &Yang, Q.H. (2013). Review Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62, 11–24. DOI: 10.1016/j.carbon.2013.05.033.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 319 32
PDF Downloads 125 125 11