Pyrolysis characteristics and kinetics of β-cyclodextrin and its two derivatives

Open access


β-cyclodextrin (β-CD) and its derivatives have been widely used to prepare inclusion complexes. However, systematic research on their thermal stabilities, pyrolysis characteristics and kinetics has rarely been reported. In this paper, thermogravimetric analysis was employed to investigate β-cyclodextrin and its two derivatives, 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) and monochlorotriazinyl-β-cyclodextrin (MCT-β-CD). The pyrolysis characteristics and kinetic parameters were obtained. The results show that three stages can be distinguished during the heating process of the above three samples. The temperature of initial decomposition of HP-β-CD (309.5°C is higher than that of β-CD (297.8°C), while the temperature of initial decomposition of MCT-β-CD (231.4°C) is lower than that of β-CD. For the three cyclodextrins, the thermal stability in descending order is HP-β-CD, β-CD and MCT-HP-β-CD. The activation energy values are 350.6, 303.3 and 113.9 KJ/mol, and the pre-exponential factor values are 1.11×1031, 1.37×1026 and 1.39×1010 for β-CD, HP-β-CD and MCT-β-CD respectively.

1. Stalina, T., Srinivasan, K., Sivakumar, K. & Radhakrishnan, S. (2014). Preparation and characterizations of solid/aqueous phases inclusioncomplex of 2,4-dinitroaniline with β-cyclodextrin. Carbohyd. Polym. 107, 72–84. DOI: 10.1016/j.carbpol.2014.01.091.

2. Periasamy, R., Kothainayaki, S., Rajamohan, R. & Sivakumar, K. (2014). Spectral investigation and characterization of host–guest inclusioncomplex of 4,4′-methylene-bis(2-chloroaniline) with beta-cyclodextrin. Carbohyd. Polym. 114, 558–566. DOI: 10.1016/j.carbpol.2014.08.006.

3. Matsuo, M., Shraishi, K., Wada, K., Ishitsuka, Y., Doi, H., Maeda, M., Mizoguchi, T., Eto, J., Mochinaga, S., Arima, H. & Irie, T. (2014). Effects of intracerebroventricular administration of 2-hydroxypropyl-β-cyclodextrin in a patient with Niemann–Pick Type C disease. Mol. Genet. Metab. Rep., 1, 391–400. DOI: 10.1016/j.ymgmr.2014.08.004.

4. Santos, E.H., Kamimura, J.A., Hill, L.E. & Gomes, C.L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT – Food Sci. Technol. 60, 583–592. DOI: 10.1016/j.lwt.2014.08.046.

5. Szwajca, A. & Koroniak, H. (2014). Encapsulation of fluoroaromatics by β-cyclodextrin and their derivatives theoretical studies. J. Fluorine Chem. 167, 122–127. DOI: 10.1016/j.jfluchem.2014.07.016.

6. Fernandes, A., Ivanova, G., Brás, N.F., Mateus, N., Ramos, M.J., Rangel, M. & Freitas, V. de. (2014). Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β–cyclodextrin. Carbohyd. Polym. 102, 269–277. DOI: 10.1016/j.carbpol.2013.11.037.

7. Gomes, L.M.M., Petito, N., Costa, V.G., Falcão, D.Q. & Araújo, K.G. de L. (2014). Inclusion complexes of red bell pepper pigments with β-cyclodextrin: Preparation, characterisation and application as natural colorant in Yogurt. Food Chem.148, 428–436. DOI: 10.1016/j.foodchem.2012.09.065.

8. Yuan, C., Lu, Z. & Jin Z. (2014). Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem.152, 140–145. DOI: 10.1016/j.foodchem.2013.11.139.

9. Martínez, I.M.A., Oca, M.N.M. de., Iriarte, A.G., Ortiz, C.S. & Argüell, G.A. (2011). Study on the interaction of Basic Violet 2 with hydroxypropyl-b-cyclodextrin. Dyes Pigments 92, 758–765. DOI: 10.1016/j.dyepig.2011.06.027.

10. Hsu, C.M., Tsai, F.J. & Tsa, Y. (2014). Inhibitory effect of Angelica sinensis extract in the presence of 2-hydroxypropyl-β-cyclodextrin. Carbohyd. Polym.114, 115–122. DOI: 10.1016/j.carbpol.2014.07.042.

11. Ol’khovich, M.V., Sharapova, A.V., Lavrenov, S.N., Blokhina, S.V. & Perlovich, G.L. (2014). Inclusion complexes of hydroxypropyl-β-cyclodextrin with novel cytotoxic compounds: Solubility and thermodynamic properties. Fluid Phase Equilibr. 384, 68–72. DOI: 10.1016/j.fluid.2014.10.030.

12. Yao, Q., You, B., Zhou, S., Chen, M., Wang, Y. & Li, W. (2014). Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study. Spectrochim. Acta Part A. 117, 576–586. DOI: 10.1016/j.saa.2013.09.036.

13. Zhu, G., Xiao, Z., Zhou, R. & Zhu, Y. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105, 75–80. DOI: 10.1016/j.carbpol.2014.01.060.

14. Zhu, G., Xiao, Z., Zhou, R. & Feng, N. (2014). Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule. J. Food Sci. Tech. DOI: 10.1007/s13197-014-1465-9.

15. Zhu, G., Zhu, X., Xiao, Z. & Yi, F. (2012). Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer. J. Anal. Appl. Pyrol. 94, 126-130. DOI: 10.1016/j.jaap.2011.11.016.

16. Zhu, G., Zhu, X., Xiao, Z., Zhou, R. & Yi, F. (2012). Pyrolysis characteristics of bean dregs and in situ visualization of pyrolysis transformation. Waste Manage. 32, 2287–2293. DOI: 10.1016/j.wasman.2012.07.004.

17. Demir, F., Dönmez, B., Okur, H. & Sevim, E. (2003). Calcination kinetic of magnesite from thermogravimetric data. Chem. Eng. Res. Des. 81, 618–622. DOI: 10.1205/026387603322150462.

18. Sevim, F., Demir, F., Bilen, M. & Okur, H. (2006). Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J. Chem. Eng. 23, 736–740. DOI: 10.1007/BF02705920.

19. Coats, A.W., & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature 201, 68–69.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 267 21
PDF Downloads 70 70 5