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In the present study, we introduce a robust modifi ed Weakly Compressible Smoothed Particle Hydrodynamics 
(WCSPH) method in order to examine miscible mixing within a two-blade paddle mixer. Since it has a Lagrangian 
nature and it is based on particles, Smoothed Particle Hydrodynamics (SPH) is an appropriate and convenient 
method for simulating the moving boundary problems and tracking the particles in the mixing process. The present 
study thus introduces a convenient SPH method for modelling the mixing process for the power-law fl uids. Two 
geometries for the mixer are examined and the effects of the power-law index on the fl uid mixing are investigated. 
The results show that the geometric change from circular chamber to twin chamber considerably increases the 
mixing rate (by at least 49%). The results also indicate that the twin chamber mixer is more effi cient for the fl uids 
with higher power-law index. 
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INTRODUCTION

    Mixing, as a transport phenomenon, is usually carried 
out to reduce inhomogeneity for species, temperatures, 
and phases. Fluid mixing is one of the most important 
phenomena in the chemical and medical industries. It 
is a crucial process in many of the devices used in the 
biochemical process, production of nucleic acids, drug 
delivery, and polymer industries. 

Two different types of mixers, stirred tanks and sta-
tic mixers, are commonly used in extensive range of 
industrial applications1. In the present study, a paddle 
mixer that includes two blades in order to improve 
mixing is investigated. The two well-known approaches 
traditionally used for simulating mixing fl ow are the 
Eulerian–Eulerian and Eulerian–Lagrangian methods. 
The Eulerian–Eulerian method assumes the secondary 
phase to be a continuum phase and applies the mass con-
servation equation in order to detect the concentration. 
By contrast, the Eulerian–Lagrangian method applies 
the dynamics of a single particle by using the trajectory 
method2. Hence, this approach assumes a continuum 
media for the liquid phase and traces the discrete phases 
using Lagrangian particle trajectory methods3. The ac-
curacy of the Eulerian–Eulerian method depends on the 
empirical constitutive equation, which is used. Further, 
this approach has restrictions in predicting certain dis-
crete fl ow characteristics. However, the disadvantage of 
the Eulerian–Lagrangian method is its requirement for 
more extensive computing time3.

Recently, full Lagrangian approaches have been used 
to model the mixing phenomena4–6; these methods are 
based on the particle methods. Among the particles 
methods, Smoothed Particle Hydrodynamics (SPH) is 
one of the fi rst approaches used to simulate mixing 
phenomena; Robinson et al.5 modelled a twin cam mixer 
using SPH, Lenaerts and Dutré4 simulated both fl uid 
and granular material using a unifi ed SPH framework, 
and Orthmann and Kolb6 proposed a fast and consistent 
SPH model which was suitable for convection-diffusion 
models of incompressible fl uids, applying their temporal 

blending scheme to reduce the number of particles in 
the simulation. 

No modelling is needed for convective terms for the 
SPH modelling; convective terms are satisfi ed directly by 
the motion of the particles. Each particle in the mixing 
fl ow can also be directly tracked. The SPH method was 
fi rst proposed for astrophysical applications by Gingold 
and Monaghan7 and Lucy8. Since then, it has been ex-
tended to model a wide range of engineering applications 
such as fl uid fl ows and transport phenomena. For SPH, 
two approaches are generally used to specify the pressure 
fi eld. The fi rst of these, known as Weakly Compressible 
SPH (WCSPH), uses an appropriate equation of state 
to relate pressure variations to density variations. The 
second, incompressible SPH (ISPH), solves the Poisson 
pressure equation in order to detect the pressure. The 
SPH is also a proper method for moving boundary and 
fl uid-structure interaction (FSI) problems because of its 
Lagrangian nature, and thus has widely been used to 
simulate FSI problems9–12.

In the present study, a robust modifi ed WCSPH is 
introduced and used to simulate the mixing phenomena 
in a two-blade paddle mixer. An ISPH method is also 
available, which has been examined for the mixing phe-
nomena13. However, WCSPH is a fully explicit method 
which is implemented more easily than ISPH, although 
the former suffers from non-physical fl uctuations. In the 
present study, a new algorithm is introduced to reduce 
the non-physical fl uctuations of the WCSPH method. As 
such, a proper method is applied to simulate two-blade 
paddle mixers. Paddle mixers are mixing devices consisting 
of one or more blades mounted on rotating shafts. The 
main advantages of paddle mixers are their simplicity and 
cost14. They are used in the micro and macro-scales. The 
paddle mixers have widely been investigated by using the 
experimental and numerical methods15–19. However, the 
numerical methods used are usually Eulerian methods. 
In this study, a fully Lagrangian approach is introduced 
for simulation of the two-blade mixers. In addition, it is 
assumed that the fl uids are non-Newtonian power-law 
and miscible fl uids. Although the advection is the main 
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part of the mixing process in the paddle mixers, the 
molecular diffusion is also an important part of mixing 
for the miscible fl uid, especially in the laminar fl ows. 
So, the diffusion equation is also considered and solved. 

Reynolds number is assumed to be low (Re<10). 
High viscosity liquids mixing or micro scale mixing are 
examples of low Reynolds fl uids mixing. High viscosity 
mixers are mixers designed for laminar mixing processes. 
Some products that may need laminar mixing in a high 
viscosity mixer include putties, chewing gum, and soaps20. 

In the following, the formulation and numerical 
procedure are fi rst discussed and then the results and 
discussion are presented. 

NUMERICAL PROCEDURE

SPH formulation and governing equations 
The SPH formulation is based on an integral form 

which indicates that each continuous defi ned function  
f over an interest domain Ω can be stated as:

 (1)

where r and r’ are respectively position vector and sub 
integral variable, W is the weight or kernel function, and 
h is the smoothing length. This equation is approximated 
by a numerical summation on the discrete points in the 
domain Ω:

 (2)

where  is the volume of the j-th particle. In the present 
study, the fi fth-order Wendland kernel is used21. Dehnen 
and Aly22 showed that the use of this kernel function 
improves the accuracy in the fl uid fl ow modelling.

 (3)

where W0 is 7/πh2 for two-dimensional cases. 
The gradient, divergence, and Laplacian operator for 

an arbitrary scalar function f or tensor function F are 
respectively:

 (4)

 (5)

 (6)

where eij is the unit vector in the inter-particle direction 
(from j to i), B is a corrective tensor for kernel gradients 
which was previously applied and examined by Bonet 
and Lok23:

  (7)

and  is a renormalization tensor offered by Fatehi 
and Manzari24, which is calculated using the following 
set of equations:

 (8)

Eq. (6) is introduced and applied by Fatehi and 
Manzari24. In the present study, Eq. (6) is used for the 
diffusion terms in the transport equations.

The governing equations are respectively mass, mo-
mentum, pressure state, and concentration transport 
equations:

 (9)

 (10)

 (11)

 (12)

where , V, p, α, C, and c are respectively the fl uid’s 
density, velocity, pressure, mass diffusivity, concentration, 
and speed of sound. μp is apparent viscosity, which is 
given by:

 (13)

where k is consistency index, np is power-law index, 
and  is

 (14)

in which α and β are the Cartesian indices.

Solution algorithm
The standard WCSPH suffers from pressure and den-

sity fl uctuations25. Fatehi and Manzari26 showed that the 
velocity-pressure decoupling reduces the non-physical 
fl uctuations, so a pseudo-constant density algorithm is 
introduced to remove the density and pressure fl uctu-
ations to improve the WCSPH. The algorithm has been 
implemented in C++. To solve equations (9) to (12), a 
predictive corrective algorithm is applied as follows, with 
the discretization of the conservation of mass (Eq. 9): 

 (15)

which leads to 

 (16)

Dividing Eq. (10) by  leads to:

 (17)

where vp is μp/. The right-hand side terms of Eq. (17) 
are respectively acceleration terms due to viscous, bu-
oyancy, and pressure forces. The SPH discretization of 
the above equation will be:

 (18)

So, the velocity can be defi ned as: 

 (19)

where  is the intermediate velocity due to the bu-
oyancy and viscous terms of fl uid particle acceleration: 
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 (20)

 
Whereas vp is not constant, it is calculated by 

, where ij is  and  is appro-
ximated by 

 (21)

where  and  are calculated by using Eq. (13). Ap-
plying the divergence operator on the Eq. (19): 

 (22)

and substituting in Eq. (16) results in:

 (23)

Then, the pressure at the next time-step according to 
Eq. (11) will be:

 (24)

As such, the velocity is corrected as follows:

 (25)

Lastly, the position vector for the particle i is rear-
ranged as follows:

 (26)
After fl uid fl ow determination, the mass transport 

equation (concentration) is solved as follows:

 (27)

The time step ( ) is calculated as

 (28)

where βt is a constant coeffi cient between 0 and 1, δmin  
is the minimum distance between two neighbouring 
particles, and Vmax is the maximum velocity magnitude 
of the particles.

The boundary conditions that dominate the wall 
boundaries are the no slip condition for velocity and 
Neumann boundary conditions for mass diffusion. The 
Neumann boundary condition for concentration (C) is 
formulated for the wall boundary conditions as follows:

 (29)

where nw is the normal direction of the wall. 
For the moving boundary condition, the pressure 

boundary condition is achieved as follows:

 (30)

where a is the acceleration. If the body is fi xed or mo-
ves with constant velocity or the normal vector of the 
surface is perpendicular to the acceleration vector (such 
as narrow blade rotation with constant angular velocity), 
this equation is simplifi ed to the following form:

 (31)

The dummy particles theory of Lee et al.25 has been 
found to be more compatible for the simulations pre-
sented herein. Two layers of dummy particles are arranged 
close to each wall boundary, similar to those particles 
defi ned by Lee et al.25. These particles have the same 
velocity as their corresponding wall particles. The dummy 
particles also have the same pressure and concentration 
as the wall in the normal direction in order to satisfy the 
Neumann boundary condition. Defects, tensile instability, 
and particle clustering are complications in SPH simula-
tions. To avoid these unfavourable phenomena, a shifting 
algorithm similar to the particle shifting approach of Xu 
et al.27 was applied in the present study. 

Validation test
The main problem involves two main physical aspects: 

mixing due to moving boundary and non-Newtonian 
power-law fl uid fl ow. Hence, the results of the present 
algorithm are separately validated against previous results 
for each of the mentioned aspects.

Moving boundary
There are some Eulerian and grid-based results for the 

mixing due to moving boundaries. One of the studies 
which investigated the effect of rigid body motion on 
the fl uid mixing was reported by Celik and Beskok28, 
who studied a channel-mixer consisting of a straight 
channel in which a circular cylinder oscillates transver-
sely to improve the mixing. They considered a fl at plate 
at the inlet fl ow (upstream of the cylinder) to remove 
the outlet vortices. The scheme of the model is shown 
in Figure 1. The cylinder motion is defi ned as follows:

 (32)

where ymax is equal to 0.4D and ff is the forced frequ-
ency of the cylinder motion. The results of the present 
algorithm are compared with those of Celik and Beskok 
for the case: 

 (33)

where U is the average velocity acting on the cylinder 
and f0 is the natural frequency of the vortex shedding. 
Approximately 20.000 particles are used for the SPH 
simulation. Contours of concentration and plot of varia-
tions of mixing index along the channel for the present 
simulations in comparison with the Celik and Beskok 
results are shown respectively in Figures 2 and 3. Mixing 
index is calculated as follows:

 (34)
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where Cmean is the mean concentration at the initial 
time, N is the number of particles, and Cj is the local 
concentration indicated by the j-th particle concentra-
tion. When proper and homogeneous mixing occurs, the 
mixing index approaches zero. 

As shown in Figure 3, there is good agreement between 
the results of the present simulation and those of Celik 
and Beskok28. For this case, the vortex shedding plays 
an important role in the mixing rate; the vortices create 
proper chaotic mixing and increase contact area among 
the particles. So, molecular diffusion is also enhanced. 
However, the Schmidt number for this case is very low 
(Sc = 1.0), which is not applicable for the liquid mixing. 
It is expected that the low Reynolds number and mixing 
due to moving boundary in the closed chambers create 
the proper conditions for the mixing at high Schmidt 
numbers.  

Non-Newtonian power-law verifi cation 
To validate the method proposed for the non-Newtonian 

power-law modelling, the present code is tested for a 
traditional problem, which is the fl ow in the lid-driven 
cavity. The problem consists of a square cavity fi lled 
with an incompressible power-law fl uid. The upper wall 
of the cavity moves with constant velocity. In Figure 4, 
the results of the present code are compared with those 
reported by Bell and Surana29 for lid-driven cavity fl ow. 
The Reynolds number of power-law fl uid is calculated by

 (35)

where Uw is the velocity of top lid, Lw is the cavity length, 
and np is power-law index. The results shown in Figure 
4 have been achieved at Repl = 100. 

Figure 1. Schematic scheme of the channel-mixer involving a transversely oscillating cylinder to mix the entering fl uids

Figure 2. Concentration distribution along the channel involving 
the oscillating cylinder obtained from the present SPH 
simulation for the case: Re = 100, Sc = 1.0, ff/f0=1.0

Figure 3. Variations of the mixing index along the channel for 
the present simulations in comparison with Celik and 
Beskok28

Figure 4. The Comparison of the vertical and horizontal mid-
dle sections velocity profi les of the lid-driven cavity 
between present study and Bell and Sourana29 results 
for Repl = 100 at two values of power law index
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RESULTS AND DISCUSSION

Problem Defi nition
The main aim of the present study is the investigation 

of the fl uid mixing in a two-blade mixer, which consists 
of a circular chamber in which two blades rotate to mix 
the fl uids. The scheme of the mixer is shown in Figure 5. 
As shown in this fi gure, the two blades are perpendicular 
to each other within a long cylinder at the initial time, 
and when the system starts to work, the two blades 
rotate to mix the fl uids. The fl uids in the mixer are po-
wer-law fl uids and have the same density but different 
concentration termed C0 and C1. In the present study, 
the effects of the power-law index, Reynolds number, 
and direction rotation of the blades on the fl uid mixing 
are investigated. 

As shown in Figure 5, it is assumed that the length 
of the mixer in comparison with its diameter is consi-
derable. So, a two-dimensional model is considered for 
numerical modelling. For the mixer shown in Figure 5, 
D/L is 2.4 where L = 0.00035 m, and Schmidt number 
is constant and equals to:

 (36)

where ω = |ω1| is the value of angular velocity of the 
blade. The effect of the number of particles has also 
been studied and the independent particle number has 
been considered for the simulation of the paddle mixer. 
About 6,200 particles are used for the present simulations.

Mixing in the fully circular chamber
The simplest chamber shape which can be considered 

for a two-blade mixer is a circular chamber. So, the 
initial step is to investigate the mixing behaviour of a 
two-blade circular mixer. Two power-law indices, np = 0.5 
and np = 1.1, are considered and the mixing patterns 
and concentration distributions for different cycles of 
blade motion (nc) are shown in Figures 6 and 7. In these 
fi gures, the patterns of advection are shown in the left 
columns and the concentration distributions are shown 
in the right columns. For both of the power-law indices, 
there are regions at the top and bottom of the chamber 
in which the fl uid particles move very slowly. In fact, 
the fl uids which are at the top end and bottom end of 
the chamber are not in the main path of the advection 
mixing. Blade revolution forms distinct bands near the 
tip of the blade, and mixing strongly occurs in the re-
gions where the bands are formed and stretched. Due 
to shear fl ow in the closed chamber, velocity of the fl uid 
layers is different. So, the chance of contact among the 
particles increases. However, the region of well-mixed 

Figure 5. 3D schematic view and 2D scheme (cross section) of 
the two-blade mixer (initial condition)

Figure 6. Patterns of the particles motion (fi rst column) and 
concentration distribution (second column) for differ-
ent revolution cycles for the case: np = 0.5, ω1/ω2 = 1, 
Repl = 3.94, Sc = 1000
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tive analysis, mixing index versus the number of blade 
revolutions for both shapes is plotted in Figure 10. As 
shown, there is considerable improvement due to the 

fl uids does not extended outside of the region where 
bands are formed; the particles which are outside of the 
blade sweep region remain largely unmixed, so effi cient 
mixing does not occur. By tracing the mixing patterns, 
it is estimated that the modifi cation of the geometry 
improves the mixing rate. The investigation of Figures 
6 and 7 shows that, if the geometry is changed so that 
it is compatible with the mixing patterns, the mixing 
rate may improve. As such, the geometry is changed to 
a twin chamber mixer. It is necessary to mention that 
the areas of both the geometries are the same. 

Mixing in the twin circular chamber mixer
As mentioned in the previous section, the geometry of 

the mixer is changed to remove the unmixed regions. As 
such, a twin chamber mixer, such as the one in Figure 8, 
is considered and examined. The results of SPH simula-
tions for the new geometry for two power-law indices 
are shown in Figure 9. In this fi gure, the concentration 
distributions for the same condition as the fully circular 
geometry are shown. As expected, the unmixed regions 
have vanished. The standard deviation can be a proper 
indicator for the liquid mixers30. It is also known as 
mixing index calculated by Eq. (34). To have a quantita-

Figure 8. The scheme of the two-blade twin chamber mixer 
(initial condition)

Figure 7. Patterns of the particles motion (fi rst column) and 
concentration distribution (second column) for differ-
ent revolution cycles for the case: np = 1.1, ω1/ω2 = 1, 
Repl = 3.94, Sc = 1000

Figure 9. Concentration distributions for the case: n = 0.5, 
ω1/ω2 = 1, nc = 12.56, Repl = 3.93 (left) and the case: 
np = 1.1, ω1/ω2 = 1, nc = 12.67, Repl = 3.93 (right)

Figure 10. Variations of mixing index versus the number of blade 
revolutions for the fully circular chamber and twin chamber 
for two power-law indices
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geometry change; the mixing improvement for np = 1.1 
is about 63% and for np = 0.5 is about 49%. Due to 
geometry change, mixing improvement for the lower 
power-law index is less than that for the higher power-
law index. As mentioned before, the shear fl ow plays a 
major role in the paddle mixers. There is a shear fl ow 
between the chamber wall and the blades. So, when the 
shear fl ow is weakened by the shear-thinning effect, the 
mixing rate decreases. In the shear fl ow, the fl uid layers 
have a different velocity. So, in addition to the advection 
effects, the contacts among the particles are increased 
which causes an increase in the molecular diffusion. 
However, for the circular chamber, the shear fl ow does 
not effectively occur in the entire chamber. 

Effects of the power-law index on mixing
As indicated in the plot of Figure 10, the effects of 

the geometry change on the case with np = 1.1 are 
more than that with np = 0.5. It was also mentioned 
that the effective shear fl ow has an important effect on 
the paddle mixers. The effect of shear fl ow is enhanced 
by increasing the power-law index in the twin chamber 
mixer. Hence, for three different Reynolds numbers 
and six power-law indices, the mixing index versus the 
number of blade revolutions is plotted in Figure 11. It 
is necessary to mention that the non-dimensional gro-
ups such as Reynolds number, Schmidt number, and 
the geometrical non-dimensional groups are assumed 
to be constant for each study. As shown in Figure 11, 
the mixing index regularly decreases by increasing the 
power-law index. These results confi rm that the mixing 
process in the two-blade twin chamber mixer is more 
effi cient for higher power-law indices. Although the 
three plots of Figure 11 are very similar, the times of 

processes are different; by increasing Reynolds number, 
the mixing time decreases considerably. 

It is necessary to mention that the case where the bla-
des rotate at the same speed but in opposite directions 
was also examined. The results shown in Figure 12 also 
confi rm that the mixing process is more effi cient for the 
cases with higher power-law indices.

Effects of the relative rotation direction of the blades 
on the mixing

To investigate the effects of the rotation direction of 
the blades relative to each other on the mixing rate, the 
mixing index of two cases with different rotation direc-
tion of the blades are compared in Figure 13. In Figure 
14, the stream lines for both cases (same rotation direc-
tion and opposite rotation direction of blades) for two 
power-law indices (np = 0.5 and np = 1.1) are shown. By 
investigation of the stream lines and mixing paths, two 
mechanisms of mass transfer can be considered for the 
twin chamber mixers; mass transfer in each chamber of 
the mixer and mass transfer between the two chambers. 
The fi rst mechanism is more effi cient for the case with 
opposite rotation direction of the blades relative to each 
other (w2/w1 = –1). However, the second mechanism is 
stronger for the case with the same rotation direction 
of the blades (w2/w1 = 1). The mixing paths of the fi rst 
mechanism are signifi cantly smaller than those of the 
second mechanism. Hence, as indicated in Figure 13, 
the mixing rate increases in the fi rst cycles for the fi rst 
mechanism in comparison with the second mechanism. 
However, maximum mixing occurs when the particles 
can travel through the entire mixer area. So, after a 
few cycles, the mixing index for the case with the same 
direction rotation of the blade reaches that of the case 
with the opposite direction rotation of the blade. Then, 

Figure 11. Variations of mixing index versus the number of blade revolutions for the twin chamber mixer for six power-law indices at three 
distinct Reynolds numbers for the case ω1/ω2 = 1 and Sc = 1000
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the mixing rate of the case with the same direction rota-
tion of the blades increases slightly compared with that 
of the opposite rotation direction of the blades. 

Figure 13. The comparison between the cases with same direction 
rotation of the blades (ω1/ω2 = 1) and those with op-
posite direction rotation of the blades (ω1/ω2 = –1) for 
Repl = 3.93

Figure 12. Variations of mixing index versus the number of blade revolutions for the twin chamber mixer for six power- law indices at three 
distinct Reynolds numbers for the case  ω1/ω2 = –1 and Sc = 1000
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CONCLUSION

In the present study, a fully Lagrangian approach was 
applied to study the effects of the geometry and power-
-law index on the mixing rate of the miscible fl uid in 
a two-blade paddle mixer. The results showed that for 
the fully circular chamber, there are regions at the top 
and bottom of the chamber in which the fl uid particles 
move very slowly. In fact, the fl uids which are at the 
top end and bottom end of the chamber are not in the 
main path of the advection mixing. So, the geometry 
was changed in a way that made it compatible with the 
patterns of particle motion.   

The results showed that this change can decrease mi-
xing index by at least 49%. Also, the results showed that 
the twin chamber mixer is more effi cient for the higher 
power-law indices. The effect of the rotation direction 
of the blades relative to each other is also investigated. 
The results show that opposite-direction rotating blades 
act faster than same-direction rotating blades. However, 
same-direction rotation is slightly more effi cient at higher 
cycles of blade rotation.

NOMENCLATURE

A  – Area, [m2]
a – Acceleration, [m/s2]

 – Corrective tensor for kernel gradients
c – Speed of sound, [m/s]
C – Concentration
Cmean – Mean concentration at the initial time
D, Dc, Dn – Cylinder diameter, [m]

eij – The unit vector in the inter-particle direction 
   (from j to i)
F – Arbitrary tensor function
f – Arbitrary scalar function
f0 – Natural frequency of vortex shedding 
ff – Forced frequency
g – Buoyancy acceleration, [m/s2]
h – Smoothing length, [m]
k – Consistency index, [Pa sn]
L – Length of the stirrer, [m]
Lw – Length of the cavity wall, [m]
m – Mass, [kg]
n – Time step counter
N – Particles number
np – Power-law index
nx – x-direction unit vector
nw – Normal vector of the surface
p, p0 – Pressure, [Pa]
r – Position vector, [m]
r’ – Sub integral variable, [m]
Re – Reynolds number
Repl – Reynolds number defi ned for the power-law 
   fl uid
Sc – Schmidt number
t – Time, [s]
Uw – Wall velocity, [m/s]
u – Horizontal component of the velocity, [m/s]
v – Vertical component of the velocity, [m/s]
V   – Velocity, [m/s]

 – Volume of j-th particle, [m3]
W – Weight or kernel function
ymax – Amplitude of the cylinder oscillation, [m]

Figure 14. Streamlines for four different cases according to power-law index and rotation direction of the blades relative to each other for 
Re = 3.93
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Greek symbols 
α – Mass diffusion coeffi cient, [m2/s]
βt  – Time-step coeffi cient 
δmin – Minimum distance between two neighboring 
   particles, [m]
ε,  – Displacement coeffi cient
μ – Viscosity, [Pa s]
mp – Apparent viscosity for power-law fl uid, [Pa s]
ν – Kinematic viscosity, [m2/s]
np – Apparent kinematic viscosity for power-law 
   fl uid, [m2/s]
  – shear-rate, [1/s]
ρ, r0 – Density, [kg/m3]
ω, w1, w2 – Angular velocity, [1/s]

 – Volume, [m3]

Subscripts 
i & j – Particle counter
α & β – Cartesian indices  
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