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Lifetime of a soluble solid particle in a stagnant medium: approximate 
analytical modelling involving fractional (half-time) derivatives

Jordan Hristov

University of Chemical Technology and Metallurgy, Department of Chemical Engineering, Sofi a 1756, 8 Kliment Ohridsky, 
blvd. Bulgaria, e-mail: jordan.hristov@mail.bg, http://hristov.com/jordan

Approximate analytical solutions concerning lifetime of soluble solid particles in an unbounded stagnant 
medium have been developed by simple application of fractional half-time derivative in the Riemann-
-Liouville sense to express the relationship between the net surface mass fl ux and the concentration at 
the interface. The solutions start with the initial formulation of Rice and Do on the time-depletion of 
the radius of a spherical particle expressed through terms including the solubility parameter as the only 
key parameter controlling the process of dissolution. The two approximate developed solutions use diffe-
rent scaling and dimensionless variables: The 1st solution is developed by an introduction of a similarity 
variable  while the 2nd solution applies the classical scaling using the initial sphere radius as 
a length scale that leads to dimensionless radius r = R/R0 and time  = Dt/R0

2. Both solutions provide 
approximate relationships close to that of Rice and Do.
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INTRODUCTION

A Particle dissolution is an old problem1 related to 
drug dissolution2, 3, mineral leaching4, chemical pro-
cessing5,

 
6, 7, controlled drug release8, 9, 10, etc. It is still 

under intense investigation3, 11, 12, 13, 14, 15. The solution to 
diffusion-dependent and moving boundary problems16 is 
not an easy task and both numerical17 and analytical ap-
proaches have been employed11. The analytical modeling 
of solid dissolution11, 18 is an attractive area because the 
fi nal relationships of the solutions are in closed forms 
allowing easily estimating relationships between the key 
parameters of the process. The modeling approaches 
employ perturbation solutions19, 20, the integral balance 
method21, heat transfer analogy22 etc. 

The present report refers to the calculation of the 
lifetime of solid particles in stagnant unbounded media, 
a problem forever young since the time of Noyes and 
Whitney1. The lifetime23 is important to many clinical 
investigations of drugs and industrial processes of disso-
lving species or minerals. In most cases the concentration 
fi eld in the surrounding fl uid is not of primary interest 
but only the time of complete dissolution should be es-
timated. Rice and Do24 developed an elegant analytical 
solution for a single sphere expressed through the term 
of solids solubility factor. This solution was the starting 
point of the present approximate solutions using initial 
formulation of Rice and Do24 and expressing the par-
ticle lifetime in terms involving the solubility factor as 
a process parameter. 

PROBLEM STATEMENT 

Governing equations
Consider a spherical particle of radius R changing its 

radius due to dissolution in a stagnant liquid by simple 
diffusion alone 

  R(t = 0) = R0 (1a)

The net fl ux of mass to the surrounding medium is 

 (1b)

while the concentration fi led in the stagnant liquid is 
described by 

 (2a)

C = C*, r = R (2b)
C → C0, r → ∞ (2c)
C = C0, t = 0, r > R (2d)

This problem has been solved by Rice and Do24 by 
developing the solution of the model (2) and then 
expressing ∂C/∂r at r = R in order to defi ne Nr=R. The 
present work refers to the potential of the fractional 
calculus25, 26, 27 to avoid the entire domain solutions in 
diffusion problems because the relationship s between 
the function value and its derivative can be established 
at the interface of the body and the surrounding me-
dium by the Riemann-Liouville fractional derivative. The 
approach has seen successfully applied for estimating 
heat resistances of contacting bodies24 by means of semi-
-derivatives and semi-integrals.

Hence, the present note refers to a new approach in 
analytical solution of problems relevant to dissolution 
of solids in unbounded and understated medium. With 
this approach, the determination of the concentration 
fi eld outside the particle boundary is unnecessary and 
the surface concentration gradient should only be known. 

Solution strategy 
The classical solution of the problem addresses two 

consequent steps: 
1. Determination of the surface mass fl ux (1b) through 

the solution of the problem (2a–2d), which is a classical 
semi-infi nite diffusion problem11, 29.

2. Determination of the radius of the sphere undergoing 
dissolution as a function of the time through (1a). The 
fi rst step needs determination of the gradient (∂C/∂r)r=R in the solid-liquid interface through the solution of the 
problem (2a–2d) for the liquid phase. Then, the ordi-
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nary differential equation (1a) concerning R(t) has to 
be solved as a second step. 

The present approach avoids development of the 
concentration distribution in the bulk phase (step 2) as 
it was done by Rice and Do24. It directly links the sur-
face concentration and the gradient (∂C/∂r)r=R 

through 
the Riemann-Liouville fractional derivative. Moreover, 
the solution concerning the sphere radius (1a) defi ning 
the time of complete dissolution is solved in terms of a 
similarity variable  because the semi-infi nite 
diffusion problem in the liquid phase (2a–d) has no 
defi nite length scale11, 29. 

PROBLEM SOLUTION 

Surface fl ux: a solution by fractional calculus 
Classically, by the transforms, θ = C – C* and 

u = θr, we get 

 (3a)

The transformation to the variable θ leads to zero initial 
conditions that allows to apply the Riemann-Liouville 
fractional semi-derivatives after splitting (3a) as25 

 (3b)

Here 

 (3c)

is a half-time fractional derivative in the Riemann-
-Liouville sense [25],  and Γ(•) is the Gamma function, 
where . 

At r = R we have from (3c):

 (4a)

Since, , we get from (4a):

 (4b)

With u* = θ*R, u0 = θ0R the boundary flux 
(∂C/∂r)r=R = Nr=R 

is given by 

 (4c)

On the other hand, we have θ = C – C*  and u= rθ, 
as well as 

 (5a)

 (5b)

Equating the right-hand sides of (5a) and (5b6) we get 

 (6a)
Now with (6a) and (1b) we read

 (6b)

Expressing (∂C/∂r)r=R  
from (4a) and by the transforms  

θ = C – C*  and u = rθ we get

 
(7a, 7b)

The expression (7a) is the same as that developed by 
Rice and Do24. However, the development of the con-
centration profi le in the bulk phase was avoided thanks 
to the fractional half-time derivative (3c). Moreover, 
the transform θ = C – C*

 zero initial conditions u0 = 0 
permits the Riemann-Liouville fractional derivative to 
be used to relate the fl ux and the function value at so-
lid-liquid interface. In the next section we develop two 
approximate solutions starting from the result (7a, 7b) 
and the balance equation (1a) but with different scaling 
and formation of the defenseless variables. 

Particle dissolution (Change of particle radius in time)

Solution – 1 
Now, with the expression (7a) the mass balance equ-

ation (1a) reads as

 (8)

Since in the dissolution process the particle size is 
time-varying and the process has no  characteristic length 
scale we introduce a similarity variable  which 
is a crucial step differing from the approach used by Rice 
and Do24. Now, with the new variable we get 

 (9a)

With the substitution η2 = y we get

 (9b)

Re-arranging (9b) with  have 

 (10a)

or more conveniently as a separable equation 

 (10b)

The solution of (10b) (Performed by Maple) is 

 (11a)

Expressing the time t explicitly from (11a) we get

 (11b)

At the point of full particle dissolution when R = 0  
we have from the similarity variable . 
Hence the time of complete dissolution tf is 

 (12a)

 (12b, 12c)

Therefore, the time for completing the dissolution 
depends only on solubility S expressed in two terms 

. Both of them are of equal order 
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Taking into account that at t = 0 we have R = R0, that 
is equivalent to τ = 0 and r = 1, as well as p(t = 0) = 1, 
we have for the constant C1

 (19)

Thus, we have 

 (20)

The final dissolution time t∫2 at p(τ) = 0 (with 
 is 

 (21)

SOME COMMENTS

The approximate analytical solutions developed in the 
previous sections resulted in 

 

or 
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and

 

These solutions are comparable to the solution of 
Rice and Do24 

 (22)

For example, the approximate solution of Rice and 

Do [24] yields  close to (21). 

CONCLUSIONS 

The present work demonstrates how the fractional half-
-time derivative in the Riemann-Liouville sense can be 
applied for direct derivation of the equation governing 
the time-dependent radius of dissolving solid sphere in 
an unbounded stagnant medium. The fi nal outcomes 
are approximate relationships for the time-to-complete 
dissolution, i.e. the lifetime of the dissolving solids. 

The two solutions developed are expressed in terms 
including the solubility factor starting from the formu-
lation of Rice and Do24. The 1st solution is developed 
by an introduction of a similarity variable   
while the 2nd solution applies the classical scaling using 

of magnitude because the solubility factor is a small 
value with order of magnitude 10–3 24. In the repeating 
terms 2A + B2 and 4A + B2 in (12a) we may neglect 
B2 because its order of magnitude is 10–6. However, this 
approximation can yield some errors, and to avoid them, 
the expression (12a) can be transformed into

 (13a)

Now, we have the order of magnitude 

Now, we may derive some approximate expressions 
about tf1 through (13a) namely

 (13b)

and assuming  we get 

 (13c)

or 

 (13d)

Solution – 2 
The Solution –1 was developed by introduction of 

a similarity variable  since we followed the 
classics in diffusion problems29 through a semi-infi nite 
medium. However, since the particle radius change in 
time is an initial value problem with R = R0(t = 0) an 
alternative initial scaling of  eq. (8) by introducing cha-
racteristic time and length scales24 can be applied, namely 
r = R/R0 and t0 = R0

2/D, τ = t/t0  (14a, 14b, 14c)
This leads to a dimensionless form of eq. (8), namely

 (15)

Using (14a, 14b, 14c) we fi nally read 

 (16)

Introducing the variable p = r2 we get 

 (17)

The solution of (17) using Maple gives

 (18)
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