Influence of reduction time of copper based catalysts: Cu/Al2O3 and CuCr2O4 on hydrogenolysis of glycerol

Open access

Influence of reduction time of copper based catalysts: Cu/Al2O3 and CuCr2O4 on hydrogenolysis of glycerol

High activity of copper based catalysts for C-O bond hydro-dehydrogenation and their poor activity for C-C bond cleavage1 have prompted an attempt to apply such catalysts in the hydrogenolysis of glycerol to 1,2- and 1,3-propanediol. In the present study the influence of hydrogen reduction time of the Cu/Al2O3 and CuCr2O4 copper catalysts on glycerol conversion and selectivity of transformation to propanediols and by-products was studied. At first a general comparison was made between the commercial catalysts and those prepared by the co-precipitation method. As better results were obtained in the presence of catalysts prepared by co-precipitation, they were selected for further detailed studies of the influence of reduction time. For both prepared catalysts Cu/Al2O3 and CuCr2O4 the reduction time of 8 h was optimal. In the presence of Cu/Al2O3 catalyst the conversion of glycerol was 59.0%, selectivity of transformation to 1,2-propanediol 77.4% and selectivity to 1,3-propanediol 1.9%. In the presence of CuCr2O4 the glycerol conversion was 30.3% and selectivity to 1,2-propanediol 67.3%.

Huang, Z., Cui, F., Kang, H., Chen, J., Zhang, X. & Xia, Ch. (2008), Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: A simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem. Mater. 20, 5090-5099. DOI: 10.1021/cm8006233.

Dasari, M.A., Kiatsimkul, P-P., Sutterlin, W.R. & Suppes, G.J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A-Gen. 281, 225-231. DOI: 10.1016/j.apcata.11.033.

Guo, L., Zhou, J., Mao, J., Guo, X. & Zhang, S. (2009). Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Appl. Catal. A-Gen. 367, 93-98. DOI: 10.1016/j.apcata.2009.07.040.

Chuah, H.H., Brown, H.S. & Dalton, P.A. (1995). Corterra poly(trimethylene terephtalate). A new performance carpet fiber (1995). Int. Fiber. J. Oct. 1995.

Greene, R.N. (1990). Copolyetherester elastomer with poly(1,3-propylene terephtalate) hard segment. U.S. Patent No. 4,937,314.

Xiu, Z.-L. & Zeng, A.-P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917-926. DOI: 10.1007/s00253-008-1387-4.

Ma, L. & He, D. (2009). Hydrogenolysis of glycerol to propanediols over highly active Ru-Re bimetallic catalysts. Top. Catal. 52, 834-844. DOI: 10.1007/s11244-009-9231-3.

Zeng, A.-P. & Biebl, H. (2002), Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biot. 74, 240-259.

Wang, S. & Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett. 117, 62-67. DOI: 10.1007/s10562-007-9106-9.

Huang, L., Zhu, Y-L., Zheng, H-Y., Li, Y-W. & Zeng, Z-Y. (2008). Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. J. Chem. Technol. Biotechnol. 83, 1670-1675. DOI: 10.1002/jctb.1982.

Tsukuda, E., Sato, S., Takahashi, R. & Sodesawa, T. (2007). Production of acrolein over silica-supported heteropoly acids. Catal. Commun. 8, 1349-1353. DOI: 10.1016/j.catcom.2006.12.006.

Gandarias, I., Arias, P.L., Requies J., Güemez, M.B. & Fierro, J.L.G. (2010). Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B-Environ. 97, 248-256. DOI: 10.1016/j.apcatb.2010.04.008.

Mane, R.B., Hengne, A.M., Ghalwadkar, A.A., Vijayanand, S., Mohite, P.R, Potdar, H.S. & Rode, Ch.V. (2010). Cu: Al nano catalyst for selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Lett. 135, 141-147. DOI: 10.1007/s10562-010-0276-5.

Kim, N.D., Oh, S., Joo, J.B., Jung, K.S. & Yi, J. (2010). Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis. Korean J. Chem. Eng. 27, 431-434. DOI: 10.1007/s11814-010-0070-5.

Khasin, A.A., Yur'eva, T.M., Plyasova, L.M., Kustova, G.N., Jobic, H., Ivanov, A., Chesalov Yu A., Zaikovskii, V.I., Khasin, A.V., Davydova, L.P. & Parmon, V.N. (2008). Mechanistic features of reduction of copper chromite and state of absorbed hydrogen in the structure of reduced copper chromite. Russian J of Gen. Chem. 78, 2203-2213. DOI: 10.1134/S1070363208110418.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 235 20
PDF Downloads 54 54 7