
54 Pol. J. Chem. Tech., Vol. 13, No. 2, 2011Polish Journal of Chemical Technology, 13, 2, 54 — 56, 2011, 10.2478/v10026-011-0024-7

An alternative method to determine the diffusion coefficient for the shrink-

ing core model
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A new method to determine the effective diffusion coefficient of sorbate in sorbent granule based on the

analytical solution of the shrinking core model (SCM) has been proposed. The experimental data presented

by Lewandowski and Roe1 concerning the sorption of copper ions by alginate granules have been applied

to compare  the analytical and numerical methods. The results obtained by both methods are very close.
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INTRODUCTION

In the last several years, the studies on possibility of the

wider application of shrinking core model developed by

Levenspiel
2
 have been carried out. Works

3–7
, among other,

confirmed usability of the above mentioned model for

more complex situations than that described by Levenspiel.

Lazaridis and Charalambous
3
 evaluated  the effective dif-

fusion coefficients by employing the SCM model for tri-

valent chromium ions, which were removed from binary

aqueous solutions by composite alginate-goethite beads in

a batch mode. Ko et al
4
 investigated  the sorption of

copper and cadmium ions onto bone char in single com-

ponent systems using fixed-bed column adsorbers. A film-

pore diffusion model (based on the unreacted core model)

was successfully used to predict the fixed-bed breakthrough

curves for the two metal ions. In Pritzker5 work shrink-

ing-core equation for pore diffusion control has been

extended to the case of a facile heterogeneous reaction

coupled to a facile homogeneous reaction occurring within

the pores of the product layer and in the bulk solution. A

model based on the shrinking-core principle was presented

for three cases of oxidative metal leaching from nonpo-

rous mineral particles6. Several limitations inherent in the

assumptions of the traditional SCM model, such as those

of oxidation agent in excess and first-order irreversible

kinetics, are overcome. Crundwell and Godorr7 presented

a mathematical model (based on the SCM model) of the

leaching of gold in cyanide solutions. In this work the

authors proposed that a layer of passivating material forms

on the surface of the gold particle as it dissolves.

After modification, the model can be applied to deter-

mine the effective diffusion coefficient in the processes

which tend to eliminate the heavy metals from aqueous

solutions in the cases when the sorption process occurs

besides diffusion1, 8–10. Moreover, the SCM model can be

applied in hydrometallurgy for the liquid-solid system11.

Alginic acid is a biopolymer carrying carboxyl groups

capable of forming complexes with metal ion. Many stud-

ies have been carried out on the application of alginic acid

to the aqueous-phase separation of heavy metals1, 12–15.

Deans and Dixon12 studied the efficiency of alginic acid

for removing lead (II) and copper (II) ions from water.

Carboxylated alginic acid prepared through oxidation

reaction with potassium permanganate had a high uptake

capacity of 3.1 mmol/g dry mass at pH 4 and showed

higher affinity to heavy metals compared to alkaline metals

(Ca2+, Mg2+) in the mixed metal system13. Removal of

Co, Cu and Zn was achieved by producing Cu/Co-alginate

gels or Cu-Zn-H-alginate gels in situ14, 15.  A viscous Na-

alginate solution was directly dispensed dropwise into the

acidic aqueous media containing  the dissolved copper

and zinc or copper and cobalt to form spherical alginate

gels which subsequently absorbed these ions until the fi-

nal equilibrium was reached.

CONVENTIONAL METHOD TO DETERMINE THE

EFFECTIVE DIFFUSION COEFFICIENT

According to the SCM model, effective diffusion coef-

ficient of copper in porous granules is determined from

the relationship (1) by Rao and Gupta16

(1)

where:

(2)

For the closed system and sorption limited by internal

diffusion, assuming a quasi-steady state:

(3)

The values of  dt are usually determined numeri-

cally by the trapezoidal method.

Then, the dependence between the left side of equation

(1) and the calculated integral values are plotted. The

value of  the effective diffusion coefficient is calculated

from the slope of the above plot as equation (4):

(4)

The described method is very often applied to study the

sorption and desorption of such elements as: copper,

cobalt, chromium, nickel, lead, gold and silver 4, 8, 9, 17.

Also Lewandowski and Roe1 took advantage of this method

in their calculations.
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ALTERNATIVE METHOD

Alternative to the conventional method for the calcula-

tion of the effective diffusion coefficient (let us name it

numerical method) is the analytical method. The differ-

ence between the analytical and numerical methods con-

sists in the manner of  the solution of the equation (1)

describing the process of metal sorption in granule.  In the

numerical method, the integral is calculated by applying

the numerical trapezoidal method however, the analytical

method consists in analytical integration. The starting point

in both methods was the differential equation16  describ-

ing radius r
c
 (unreacted core) change of the unreacted part

in granule progressing in time:

(5)

By applying a suitable substitution, Rao and Gupta16

obtained the following equation:

(6)

After the integration of the left side of equation (6) and

rearrangement, equation (1) is obtained.

Otherwise, after rearrangement of equation (5), we

obtain:

(7)

Radius r
c
 to granule radius R ratio is described by re-

lationship: , simultaneously: 

therefore:

(8)

After substituting Eq. (8) to Eq. (7), integration and

rearrangement, we obtain:

(9)

By integration of the integral occurring in Eq. (9), the

following relationship is obtained:

          (10)

where:

         (11)

and:

         (12)

In order to calculate the effective diffusion coefficient,

first of all, for the given values of time t and for the known

C
i
 and C∞  values,  P(ω) is calculated as follows:

(13)

Then, a graph of relationship: P(ω)=f(t) is plotted.

Effective diffusion coefficient D is calculated from the

slope of the above plot as equation (14):

              (14)

RESULTS AND DISCUSSION

For the determination of the diffusion coefficient of

copper ions in alginate granules by analytical method, we

made use of the data presented by Lewandowski and Roe1.

The dependence between P(ω) values and time, taking

into account the content of alginate in granules deter-

mined for the diffusion of Cu (II) ions is presented in

Fig.1. Biopolymer content in the beads was varied be-

tween 2% and 5% w/w. It can be clearly seen that the

points lay along the straight lines, and all correlation

coefficients are greater than 0.99.

Figure 1. Dependence between P(ω) values and time for

various contents of alginate in granules determined

for the diffusion of Cu (II) ions

The obtained results were compared with the results

determined by the numerical method by Lewandowski

and Roe1 (Table 1).

Table 1. Effective diffusion coefficient of Cu(II) ions in

calcium alginate granules with various content of

biosorbent
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CONCLUSIONS

It was shown that the analytical method can be effec-

tively applied instead of the numerical method in order to

calculate the effective diffusion coefficient. The results

obtained by both methods are very similar.

NOMENCLATURE

C
t

– Concentration of sorbate ions in the solution in

  moment t,

C
i

– Initial concentration of sorbate ions in the solu-

  tion,

C∞ – Equilibrium concentration of sorbate ions in the

  solution,

C0 – Mean density of sites bonding sorbate ions in the

   sorbent granule,

D – Effective diffusion coefficient of sorbate in the

   sorbent granule,

N – Number of the sorbent granules,

r
c

– Radius of the unreacted sorbent core,

R – Radius of the sorbent granules,

t – Time,

V – Volume of the solution containing the sorbate,

X
t

– Conversion of the granule defined by equation (2),

χ – Dimensionless constant defined by equation (10),

ω – Dimensionless constant defined by equation (11),
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