Removal of Zn(II) from chloride acidic solutions with hydrophobic quaternary salts

Open access

Removal of Zn(II) from chloride acidic solutions with hydrophobic quaternary salts

The equilibrium of zinc(II) extraction from hydrochloric acid solutions with phosphonium and ammonium quaternary salts and their application as carriers in polymer inclusion membranes were studied. The most efficient was the extraction of zinc with the use of chlorides and bromide of ammonium and phosphonium salt (more than 90%). Quaternary ammonium and phosphonium chlorides and bromide are efficient extractants of zinc(II) from hydrochloric acid solutions. Two-fold molar excess of extractant over Zn(II) is necessary for efficient extraction (100%). Solvent extraction power of the extractants studied decreases with increasing hydrophobicity of the anion in the following sequence: QPCl > QPBr > QPBis > QACl > QABF4 > QPBF4 > QPPF6 > QPNtf2. A solution of 1 M H2 SO4 is chosen as the best stripping phase from the technological and economical point of view. Transport across polymeric inclusion membrane enables concentration of the stripping solution; however it takes a very long time.

Ordinance of the Agriculture Minister, The Acts of 2004, No. 168 entry 1763.

Regel-Rosocka, M. (2010). A review on methods of regeneration of spent pickling solutions from steel processing. J. Hazard. Mater. 177(1-3), 57-69. DOI:10.1016/j.jhazmat.2009.12.043.

Bradaric, C. J., Downard, A., Kennedy, C., Robertson, A. J. & Zhou Y. (2003). Industrial preparation of phosphonium ionic liquids. Green Chem. 5, 143-152. DOI: 10.1039/b209734f.

Pernak, J. (2003). Ionic liquids. Compounds for the 21st century., Przem. Chem. 82, 521-524.

Wasserscheid, P. & Welton, T. (2008). Ionic liquids in synthesis, II Ed, Wiley-VCH Verlangs GmbH&Co, Weinheim. Retrived August 20, 2009, from Springer Link http://books.google.pl/books?id=pI_9s0UmHlAC&printsec=frontcover&dq=inauthor:%22Peter+Wasserscheid%22&cd=1#v=onepage&q=&f=false

Atefi, F., Garcia, M. T., Singer, R. D. & Scammells, P. J. (2009). Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chem. 11, 1595-1604. DOI: 10.1039/b913057h.

Regel-Rosocka, M., Cieszyńska, A. & Wiśniewski, M., (2006). Extraction of zinc(II) with selected phosphonium ionic liquids. Przem. Chem. 85, 651-654.

Narębska, A. (1997). Membranes and membrane separation techniques. Toruń, Poland: Wydawnictwo UMK.

Kozłowski, C. & Walkowiak, W. (2005). Applicability of liquid membrane in chromium(VI) transport with amines as ion cariers. J. Membr. Sci. 266, 143-150 DOI: 10.1016/j.memsci.2005.04.053.

Ulewicz, M. (2007). The transport of Zn(II) and Pb(II) ions through polymer inclusion membranes containing di(2-ethylhexyl)phosphoric acid. Przem. Chem. 86, 861-865.

Ulewicz, M., Lesinska, U., Bochenska, M. & Walkowiak, W. (2007). Facilitated transport of Zn(II), Cd(II) and Pb(II) ions through polymer inclusion membranes with calix[4]-crown-6 derivatives. Sep. Purif. Technol. 54, 299-305. DOI: 10.1016/j.seppur.2006.09.018.

Salazar-Alvarez, G., Bautista-Flores, A. N., De San Miguel, E. R., Muhammed, M. & De Gyves, J. (2005). Transport characterisation of a PIM system used for the extraction of Pb(II) using D2EHPA as cartier. J. Membr. Sci. 250, 247-257. DOI: 10.1016/j.memsci.2004.09.048.

Nghiem, L. D., Mornane P., Potter, I. D., Perera, J. M., Cattrall, R. W. & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 281, 7-14. DOI: 10.1016/j.memsci.2006.03.035.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 282 21
PDF Downloads 84 83 4