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One of the main toxic components of post quenching salts formed in large quantities during steel hardening

processes is BaCl
2
. This dangerous ingredient can be chemically neutralized after dissolution in water by

means of reaction crystallization with solid ammonium sulphate (NH
4
)
2
SO

4
. The resulting size distribution

of the ecologically harmless crystalline product – BaSO
4
 – is an important criteria deciding about its further

applicability. Presence of a second component of binary quenching salt mixture (BaCl
2
–NaCl) in water

solution, NaCl, influences the reaction-crystallization process kinetics affecting the resulting product prop-

erties. The experimental 39 input-output data vectors containing the information about the continuous

reaction crystallization in BaCl
2
 – (NH

4
)
2
SO

4
 – NaCl – H

2
O system ([BaCl

2
]
RM

 = 10 – 24 mass %, [NaCl]
RM

= 0 – 12 mass %, T = 305 – 348 K and τ = 900 – 9000 s) created  the database for the neural network

training and validation. The applicability of diversified network configurations, neuron types and training

strategies were verified. An optimal network structure was used for the process modeling.

Keywords: barium sulphate, sodium ions, used quenching salts, steel hardening, barium chloride, reaction

crystallization kinetics, population density distribution, chemical neutralization, solid waste utilization,

neural network model.

INTRODUCTION

Barium chloride, BaCl
2
, is a dominant component of

the used quenching salts, formed as the side-products in

steel hardening processes. This constituent is mainly re-

sponsible for high toxicity of these accumulated

multicomponent solid wastes, thus for their potentially

strong influence on the composition of leachates contact-

ing directly with the ground water resources. Considering

a wide application of these operations in a global metal-

lurgical industry an original, proecological and practically

waste-free technology of their chemical neutralization was

elaborated and tested in a pilot plant scale1 – 6. As a result

of a complex reaction crystallization process between the

solid (s) and liquid (l) (after the solid wastes dissolution

in water) substrates, Eq. (1):

(1)

crystalline barium sulphate (used, among others, as a

mineral paint or filling material in rubber and plastics)

and ammonium chloride solution (base component of

liquid mineral fertilizers) are produced – both ecologi-

cally harmless. Various steel hardening technologies re-

quire an individually selected composition of quenching

salts. The subject of the presented research was a binary

mixture of BaCl
2
 and NaCl. Under such process condi-

tions the second, liquid product is composed of NH
4

+,

Na+, Cl- ions, ions of other metals (microelements) and

water. It is usually supplemented with the additional fer-

tilizer components like urea, KCl, MgCl
2
, manganese and

others, and can be finally utilized as a liquid mineral

fertilizer. Considering its relatively high Na+ ions content

(ca. 1 mass %) it is especially recommended for grassland

(N : K : Mg = 1 : 0,5 : 0,2) or for sugar beet (N : K :

Mg = 1 : 0,5 : 0,4) cultivation. The remaining solid

mixture is practically non-toxic and can be used else-

where, e.g. in the building industry after the solidification

with cement for the production of small-size building

elements (in accordance with the American Standard

Association requirements)5.

Application of solid reagent ((NH
4
)

2
SO

4
), despite the

reduction of the total volume of the liquid system, con-

tributes to the complexity of the reaction crystallization

process under study7 – 11. It includes the interactions be-

tween hydrodynamic effects in microscale (e.g. ammo-

nium sulphate dissolution kinetics, ions diffusion, etc.),

kinetics of ionic reactions generating the supersaturation

and the correlated processes of nucleation and growth of

the crystal phase. Kinetics of barium sulphate precipita-

tion is widely described in the literature in various as-

pects, both computational and experimental12 – 15. The

experimental activity was, however, focused mainly on the

liquid inlet solutions, regarding the precipitated BaSO
4
 as

a model tracer, convenient for the testing of various proc-

ess conditions. Systematic research of the authors16 – 25

covers the range of high concentrations of barium chlo-

ride coupled with an application of solid ammonium

sulphate as a second reagent. It results from the practical

requirements of the elaborated technology of BaCl
2
 neu-

tralization1 – 6. The experimental data provide some new

contribution into the knowledge about this reaction crys-

tallization system, especially in extreme technological

conditions in respect to the concentrations of the main

components and the influence of additives. Kinetic as-

pects of the process were raised and discussed.

In hardening technologies of some types of steel main

component of quenching salts, BaCl
2
, must be accompa-

nied by NaCl (10 – 50 mass %).  The Presence of NaCl

in a liquid mixture after original solid waste dissolution
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(even 12 mass % and more) influences the kinetics of

reaction crystallization of BaSO
4
 compared to the pure

BaCl
2
 – (NH

4
)

2
SO

4
 – H

2
O system. It is practically impos-

sible to predict the influence of Na+ ions on the process

kinetics in such a system exclusively on the basis of theo-

retical considerations. The laboratory, design-oriented

kinetic data are the only reliable source of information.

Employment of these data is connected with the crea-

tion of a mathematical model of the process. Such model

makes the correlation between crystal size distribution

(CSD) of the reaction crystallization product and the

assumed values of technological process parameters. A

compromise between the accuracy of a model resulting

from the consideration of all the identified mechanisms,

their interrelations and computational possibilities of its

numerical solution is required. The last constraint is usu-

ally connected with the application of some simplifying

assumptions devaluating the reliability of the calculation

results. These reasons suggested the application of artifi-

cial neural networks for the possibly precise numerical

description of the process under study.

At the present time artificial neural networks (ANNs)

are more and more commonly used in various research

areas. They can provide a relatively precise multivariable,

nonlinear correlations, helpful in the numerical descrip-

tion of the systems where intrinsic mechanisms are too

complex to be independently identified theoretically and

analytically described. In such cases the properly trained

and verified ANN can be regarded as a ”black-box” model

of the system, sufficient enough for the engineering appli-

cations. This computational structure can be created on

the basis of experimental data only, interpreted as a set of

”simulated object responses” and collected during its sam-

pling in the diversified technological conditions. Theo-

retical background concerning possible neural network

structures, training algorithms, their computational possi-

bilities and limitations, etc. can be found in other

works26 – 28. The promising results of the application of

ANNs for the numerical description of the reaction crys-

tallization of barium sulphate in various conditions, pre-

sented by the authors in detail in29 – 35, suggested the

enhancement of the range of foreign components in the

modeled system.

EXPERIMENTAL

A continuous DT (Draft Tube) MSMPR (Mixed Sus-

pension Mixed Product Removal) laboratory crystallizer

of working volume V
w
 = 0.6⋅10-3 m3 providing the inter-

nal circulation of the suspension was selected as the model

reactor for the controlled synthesis and formation of

barium sulphate by the reaction crystallization process. It

was a cylindrical glass tank (V
t
 = 0.001 m3, D = 0.120 m,

H = 0.123 m) with the draft tube profile situated in its

axis (d = 0.057 m, h = 0.053 m) protecting the stable and

intensive enough circulation of the suspension, inside

which there was a three-paddle propeller agitator

(h
p
 = 0.007 m, revolution number 7 s-1).

For BaSO
4
 synthesis the following chemical reagents

were applied: hydrated barium chloride, BaCl
2
⋅2H

2
O, p.a.,

ammonium sulphate, (NH
4
)

2
SO

4
, p.a., sodium chloride

NaCl, p.a. from POCh Gliwice, Poland and double dis-

tilled water. Crystallizer (Fig. 1) was provided with the

concentrated water solution of barium and sodium chlo-

rides (pump 7 – into a ring-shape space between the

crystallizer vessel and a draft tube profile) and crystalline

ammonium sulphate (weighed portion balance 4 and feeder

Figure 1. Experimental setup: 1 – laboratory DT MSMPR crystallizer with agitator, 2 – thermostat, 3 – PC computer – control

system, 4, 6, 9 – electronic balances, 5 – feeder, 7, 8 – pumps, M – agitator speed control, T – temperature control



Pol. J. Chem. Tech., Vol. 11, No. 4, 2009 15

5 – onto the surface of circulating suspension inside the

draft tube area close to the agitator's shaft) under the

strictly controlled stoichiometric proportions.  The crys-

tal product (BaSO
4
) suspension was withdrawn continu-

ously by pump 8. After the stabilization of the determined

technological parameters of the reaction crystallization

the process was carried out during 7τ (in the pproximately

steady state regime).

After this time period the suspension density (M
T
),

chemical composition of mother solution (ICP – PHILIPS

SC PU 7000) and crystal size distribution of barium sul-

phate (Particle Size Analyzer COULTER LS-230) were

determined. The 39 experimental tests covered the fol-

lowing technological parameter ranges: BaCl
2
 concentra-

tion in a feed solution: 10 – 24 mass %, NaCl concentra-

tion in a feed solution: 0 – 12 mass %, process tempera-

ture T = 305 – 348 K and mean residence time of the

nitially precipitated and then growing crystals in the ap-

paratus working volume τ = 900 – 9000 s. As a result of

the reaction crystallization process, depending on the as-

sumed technological parameter values, barium sulphate

crystals in the mean size L
m

 range 1.84 – 11.10 mm and

of CV within the 50.4 – 72.4% were produced20.

CALCULATIONS

The 39 experimental data vectors resulting from sam-

pling of the reaction crystallization system in various

process conditions created the basis for the ANN training

and validating. These data vectors were divided randomly

into training, validating and testing subsets in proportion

(2:1:1)36. Each individual 20-element input-output data

vector consisted of four inputs – independent process

variables, including:

– concentration of barium chloride in a feed solution,

[BaCl
2
]

RM
,

– concentration of sodium chloride in a feed solution,

[NaCl]
RM

,

– process temperature, T,

– mean residence time of the initially precipitated and

then growing crystals in a crystallizer working volume, τ,

and the corresponding outputs, characterizing final prod-

uct of reaction crystallization:

– mean size of barium sulphate crystals, L
m

,

– coefficient of size variation within the barium sul-

phate crystals, CV,

– population density distribution (PDD) of crystals in

an lnn(L) form, corresponding to the selected L values

from within the 2.50⋅10-7 – 1.25⋅10-5 m range (in total –

14 points).

The iterative learning-testing (overfitting prevention)

computations were carried out in Statistica Neural Net-

works environment. Considering the intrinsic nature of

the computational problem (supervised learning mode) a

multilayer feedforward network type was selected. The

500 ANN structures of 4 inputs ([BaCl
2
]

RM
, [NaCl]

RM
, T,

τ), 16 output neurons (L
m

, CV and a set of 14 population

density values lnn(L) for the predetermined sizes, L) and

diversified numbers of hidden neurons (1 – 32) distrib-

uted in various proportions within 1 – 2 hidden layers

were trained and tested. Various types of nets were simu-

lated, including: RBF (radial basis function), GRNN (gen-

eral regression neural network), linear and MLP

(multilayer perceptron). Appropriate learning algorithms

and their consecutive combinations were applied for each

ANN type, respectively, including: backpropagation error

algorithm (BP) with the modifications, sub-sample algo-

rithm (SS), pseudo-inversion algorithm (PI), conjugate

gradient algorithm (CG), as well as the ones based on

radial deviation magnitude (K-mean / KM and K-nearest

neighbors – KN). In the case of MLP type networks 100

initial training iterations with the fundamental

backpropagation error algorithm were applied, followed

by refining of the results by 20 – 205 training iterations

with a conjugate gradient algorithm. The quality of the

multivariable nonlinear regression for each network was

individually verified using statistical error indicators for

training, validating and testing subsets in a form of net

quality and net prediction error (six statistical indicators).

Generally, on the basis of intermediate test results, ANN

quality varied within the following ranges: training subset

0.0153 – 0.9999, validating subset 0.0640 – 1.0014, test-

ing subset 0.2135 – 1.3731. Its error varied as follows:

training subset 0.0277 – 1.1206, validating subset 0.0771

– 2.5573, testing subset 0.0710 – 1.0426. Various minor

net topologies covering selected combinations of inputs

(from 1 to all 4 original inputs, appropriately) were also

tested to verify the relative importance of the individual

input parameters: [BaCl
2
]
RM

, [NaCl]
RM

, T and τ. The most

important parameter proved to be [BaCl
2
]

RM
 (corre-

sponded net error in case of its excluding from the input

data set was 5.0244), then: T (net error 4.2700), τ (net

error 3.7380) and finally [NaCl]
RM

 (net error 2.4186). It

should be noted that each of the input parameters was

clearly distinguished with its own, individual error level.

No pairs of comparable importance were observed. Keep-

ing to a minimum of the input parameters number (3, 2

or 1) produced thus a noticeable decrease in ANN's qual-

ity, indicating indirectly the importance of all original

four inputs in respect to the correct prediction of the final

process results.

For comparison purposes other training algorithms

were also tested to verify the possibility of increase in the

training process rate (in Matlab  environment):

backpropagation with momentum, backpropagation with

adaptive learning rate parameter, backpropagation with

momentum and with adaptive learning rate, Levenberg-

Marquardt algorithm, resilient backpropagation algorithm,

Fletcher-Reeves Update algorithm, Polak-Ribiére Update

algorithm and Powell-Beale Restarts algorithm.

The optimal net structure proved to be a multilayer

perceptron (MLP) with one hidden layer with 15 neurons.

Its quality in respect to the training subset was 0.0750,

validating subset: 0.0640, testing subset: 0.3093. The

appropriate RMS (Root Mean Squared) error values were

as follows: training subset 0.0386, validating subset 0.0864,

testing subset 0.0859 (the details of error distribution

within the individual 16 outputs are presented in Table 1).

Close error values for validating and testing subsets con-

firm the good generalization properties of the selected

neural model. This net was trained by 100 iterations with

backpropagation error algorithm followed by 211 itera-

tions using a conjugate gradient algorithm up till some

overfitting effects were registered, responsible for the ter-

mination of the learning procedure.
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RESULTS

An optimal structure of neural network, considered in

this work as a numerical model of the process, was used

for the calculations – simulation of the influence of vari-

ous vectors of process parameters: concentration of liquid

feed in respect to BaCl
2
 and NaCl ([BaCl

2
]

RM
, [NaCl]

RM
),

process temperature T, as well as mean residence time of

the suspension in a reactor working volume, τ, on the

product size composition (in a form of PDD), mean size

of product crystal L
m

 and its CV.

Influence of Na+ ions concentration on PDD course

Neural network simulation results in a form of the

projection of gradual change of lnn(L) course resulting

from increase in NaCl concentration in a feed solution (0

– 12 mass %) is presented in Fig. 2. Model calculations

correspond to: T = 348 K, [BaCl
2
]

RM
 = 10 mass %,

τ = 900 s. With the [NaCl]
RM

 value increase one can

observe clear decrease in the population density values

corresponding to the largest crystals and simultaneously

increase in these attributed to the smallest particles. It

may be roughly interpreted as the gradual deterioration of

the product's size distribution. It suggests that increase in

Na+ ions concentration in the BaCl
2
 – (NH

4
)

2
SO

4
 – NaCl

– H
2
O system shifts mass transfer mechanisms towards

nucleation rather than growth processes. The nonlinear

character of lnn(L) dependency course is more pro-

nounced for larger concentrations of sodium ions in the

reaction crystallization environment, e.g. corresponding

to [NaCl]
RM

 = 6 – 12 mass %. In the case of the absence

of Na+ ions ([NaCl]
RM

 = 0 mass %) apparent linearity of

lnn(L) function is visible. From these observations it can

be theoretically assumed, that for the higher concentra-

tions of Na+ ions in the system the side-dependent growth

(SDG) kinetics begins to play an essential role. It gener-

ally includes complex hydrodynamic effects in the con-

vective mass transfer during larger crystals growth, attri-

tion processes as well as size-dependent solubility within

the smallest crystals range. Some possible growth rate

dispersion (GRD) effects cannot be excluded. The higher

concentration of NaCl in a feed solution the lower mean

size of product crystal population and more diversified

crystal sizes (higher CV values) can be expected. These

trends are analyzed in the two next sections in detail.

Influence of Na+ ions concentration on mean crystal size

Neural model predictions concerning the influence of

NaCl concentration in a feed solution on the mean size of

product crystals, L
m

, formed in a continuous reaction

crystallization of BaSO
4
 in BaCl

2
 – (NH

4
)

2
SO

4
 – NaCl –

H
2
O system are presented in Fig. 3. Generally some de-

crease in L
m

 value with the increase in Na+ ions concen-

tration in a feed solution is observed. However, the

magnitudes of this decrease, as well as the character of

this declining trend are different for various sets of other

process parameters: [BaCl
2
]

RM
, T, τ. The largest L

m
 values

are observed for [BaCl
2
]

RM
 = 10 mass % and τ = 9000

s, both for T = 348 K (upper curve) and 305 K (lower

curve). In these process conditions one can utilize in

practice strong effect of influence of process temperature

(within the 305 – 348 K range) and [NaCl]
RM

 value (from

0 to 12 mass %) for adjusting the required mean size of

the product crystals.  A similar trend can be observed for

[BaCl
2
]

RM
 = 10 mass % and τ = 900 s, where the

synergistic effects of the influence of temperature and Na+

ions concentration in a feed solution can be directly ap-

plied in practice. However, for τ = 900 s considerable

lower values of mean size of product crystals can be ex-

pected. Thus for the production of larger crystals one

should consider selection of mean residence time value

τ > 900 s. In case of [BaCl
2
]

RM
 = 24 mass % the same

effects are observed: higher values of L
m

 can be obtained

at higher temperature (348 K) and for longer mean resi-

dence time of suspension (9000 s). However, in the case

of higher [BaCl
2
]

RM
 values the range of L

m
 variability

considerably narrows. The values of L
m

 are also generally

lower regardless the decisive process parameter changes

(τ, T). The influence of Na+ ions concentration in a feed

solution on the reaction crystallization product properties

Table 1. Statistical characteristics of the quality of artificial

neural network used for the simulations in respect

to all individual output variables (internal distribu-

tion of a general prediction error)

Figure 2. The influence of NaCl concentration in a feed

solution on the gradual modification of the popu-

lation density distribution course (product BaSO
4

crystals) – exemplary modeling results with the

use of artificial neural network for the assumed

process conditions: T = 348 K, [BaCl
2
]
RM

 = 10

mass %, τ = 900 s.
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is in these conditions strongly reduced. It can be con-

cluded, that higher values of [BaCl
2
]

RM
 promote higher

nucleation rates compared to the crystal growth rates. As

a result of such interrelations more fine-grained crystal

product is formed. Contrary, larger values of mean resi-

dence time facilitate the formation of larger particles. In

such process conditions the working supersaturation level

is lower which makes the growth process slower. How-

ever, longer contact time between the growing crystals and

the mother solution compensates this effect providing the

crystal phase with more convenient conditions for stable

growth. Moreover, lower nucleation rate contributes to

this effect advantageously. The influence of the process

temperature on L
m

 values should be interpreted in respect

of the conditions of ions diffusion in a multicomponent

system, the dissolution rate of solid reagent ((NH
4
)

2
SO

4
),

as well as considering the kinetics of reaction of barium

sulphate synthesis.

Influence of Na+ ions concentration on CV

ANN model predictions concerning the influence of

sodium chloride concentration in a feed solution on the

coefficient of variation (CV) of the product crystal size in

the continuous reaction crystallization in BaCl
2
 –

(NH
4
)

2
SO

4
 – NaCl – H

2
O system are presented in Fig. 4.

Generally, with the increase in [NaCl]
RM

 value one ob-

serves the increase in a CV parameter value. Various

magnitudes of this increment depend on the assumed sets

of other process parameter (T, [BaCl
2
]

RM
, τ) values. The

most essential influence of Na+ ions concentration in a

feed solution on the CV of crystal product population,

thus on its market properties, is observed for higher con-

centrations of BaCl
2
 in a feed solution (24 mass %) and

Figure 3. The influence of NaCl concentration in a feed solution on the mean size of BaSO
4
 crystals produced in the assumed

process conditions – modeling results with the use of artificial neural network

for short τ (900 s).  The process temperature also contrib-

utes to this effect, however quantitatively only (parallel

shift of the similar in shape trend line). In these process

conditions, theoretically responsible for the possibly

maximal supersaturation values in the system, the influ-

ence of sodium ions is clearly demonstrated (probably

intensified by high supersaturation level). A similar strong

trend is observed for the lower value of [BaCl
2
]

RM

(10 mass %), short t (900 s) and the low process tempera-

ture (305 K). Under other process conditions the influ-

ence of NaCl concentration in a feed solution is rather

moderate – more important are other process parameters

responsible for the position of CV = f([NaCl]
RM

) curve in

the coordinate system (Fig. 4).

CONCLUSIONS

Addition of Na+ ions into a complex BaCl
2
 – (NH

4
)

2
SO

4

– H
2
O system influences the kinetics of the reaction crys-

tallization process of BaSO
4
. The computational struc-

ture of ANN based on the experimental data only and free

of any simplifying assumptions can be regarded as the

empirical multiparameter nonlinear regression model.

Based on ANN calculations one is able to examine the

changes between nucleation and growth intensity for vari-

ous combinations of the decisive process parameters

(PDD = f(T, τ, [BaCl
2
]

RM
, [NaCl]

RM
)). It becomes also

possible to forecast size-properties of the crystal product

in respect to CV and L
m

 values, thus to test the most

convenient strategies of the combination of the techno-

logical parameter values necessary for reaching the re-

quired results.
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NOMENCLATURE

[BaCl
2
]

RM
– concentration of barium chloride in a feed

  solution, mass %;

CV – coefficient of variation (of crystal size), %;

d – internal diameter of a draft tube profile, m;

D – internal diameter of a crystallizer, m;

h – height of a draft tube profile, m;

h
p

– vertical distance between propeller

  agitator level and crystallizer bottom, m;

H – height of a crystallizer, m;

L – crystal size, m;

L
m

– mean size of product crystal population, m;

M
T

– suspension density (mass of crystal phase

  in unit volume of suspension), kg m
-3

;

n – population density (number of crystals

  within the defined size range ΔL in unit

  volume of suspension divided by this size

  range width), m
-1

 m
-3

;

[NaCl]
RM

– concentration of sodium chloride in a feed

  solution, mass %;

T – process temperature, K;

V
t

– total volume of the crystallizer, m
3
;

V
w

– working volume of the crystallizer, m
3
.

Figure 4. The influence of NaCl concentration in a feed solution on a CV coefficient of BaSO
4
 crystals produced in the

assumed process conditions – modeling results with the use of artificial neural network

Greek letters

τ – mean residence time of crystal suspension

  in a crystallizer working volume, s.

Abbreviations

ANN – artificial neural network;

CSD – crystal size distribution;

DT – draft tube;

GRD – growth rate dispersion;

GRNN – general regression neural network;

MLP – multilayer perceptron;

MSMPR – mixed suspension mixed product removal;

PDD – population density distribution;

RBF – radial basis function;

RMS – root mean squared error;

SDG – size-dependent growth;

SIG – size-independent growth.

LITERATURE CITED

1. Matynia, A., Wlaz³o, P., Górecki, H. & Hoffmann, J.

(1998). The way of barium sulphate production, Pol. Pat.,

Appl. No.: P-328476.

2. Matynia, A., Górecki, H. & Wlaz³o, P. (1999). Crystal-

lization of barium sulphate in the case hardening wastes

treatment process, in: Proceedings of 14
th

 Symposium on

Industrial Crystallization, Institution of Chemical Engineers,

Cambridge, England, CD-ROM No. 0163.

3. Matynia, A., Wierzbowska, B., Wlaz³o, P., Kozak, E. &

Bechtold, Z. (1999). A technological-apparatus design of

the process line for processing of used quenching salts. In¿.

Ap. Chem. 38(1) 11 – 15 (in Polish).

4. Matynia, A., Hoffmann, J. & Wlaz³o, P. (1999). Re-

search on case used quenching wastes treatment process

products utilization. Chem. In¿. Ekol. 6, 207 – 216 (in Polish).

5. Matynia, A. (2002). Used quenching salts treatment

process. Env. Prot. Eng. 28(2), 77 – 94.



Pol. J. Chem. Tech., Vol. 11, No. 4, 2009 19

6. Matynia, A., Wlaz³o, P., Górecki, H. & Hoffmann, J.

(2004). The way of liquid mineral fertilizer production. Pol.

Pat. No.: 186629.

7. Nielsen, A.E. (1964). Kinetics of Precipitation. Oxford,

England: Pergamon Press.

8. Randolph, A.D. & Larson, M.A. (1988). Theory of

Particulate Processes: Analysis and Techniques of Continuous

Crystallization. New York, USA: Academic Press.

9. Rojkowski, Z. & Synowiec, J. (1991). Crystallization and

Crystallizers. Warszawa: WNT (in Polish).

10. Mullin, J.W. (1992). Crystallization. Oxford, England:

Butterworth-Heinemann.

11. Söhnel, O. & Garside, J. (1993). Precipitation, Basic

Principles and Industrial Applications. Boston, USA:

Butterworth-Heinemann.

12. Ba³dyga, J. & Orciuch, W. (2001). Barium sulphate

precipitation in a pipe ¾ an experimental study and CFD

modeling. Chem. Eng. Sci. 56(7), 2435 – 2444. DOI:10.1016/

S0009-2509(00)00449-8.

13. Wong, D.C.Y., Jaworski, Z. & Nienow, A.W. (2001). Effect

of ion excess on particle size and morphology during barium

sulphate precipitation: an experimental study. Chem. Eng. Sci.

56(3), 727 – 734.  DOI:10.1016/S0009-2509(00)00282-7.

14. Öncül, A.A., Sundmacher, K. & Thévenin, D. (2005).

Numerical investigation of the influence of the activity coef-

ficient on barium sulphate crystallization. Chem. Eng. Sci.

60(19), 5395 – 5405. DOI:10.1016/j.ces.2005.04.074.

15. Öncül, A.A., Sundmacher, K., Seidel-Morgenstern, A.

& Thévenin, D. (2006). Numerical and analytical investiga-

tion of barium sulphate crystallization. Chem. Eng. Sci. 61(2),

652 – 664. DOI:10.1016/j.ces.2005.07.037.

16. Matynia, A., Wlaz³o, P. & Koralewska, J. (2001). The

influence of residence time on the crystallization of barium

sulphate in the process of barium ions precipitation by means

of crystalline ammonium sulphate addition. Pol. J. Appl. Chem.

XLIV (3 – 4), 91 – 107.

17. Matynia, A., Wlaz³o, P. & Koralewska, J. (2001). The

influence of barium sulphate crystallization parameters on

its crystal size. Pol. J. Chem. Technol. 3(1), 15 – 20.

18. Matynia, A. (2002). The quality of barium sulphate

crystals obtained during continuous precipitation crystalliza-

tion in the process of post quenching salts utilization. Pol.

J. Chem. Technol. 4(4), 19 – 25.

19. Matynia, A., Piotrowski, K., Koralewska, J. &

Wierzbowska, B. (2003). Nucleation and growth kinetics of

barium sulphate crystals in the used quenching salts process-

ing technology. Ecol. Chem. and Eng. 10(8), 751 – 761.

 20. Matynia, A., Piotrowski, K., Koralewska, J. &

Wierzbowska, B. (2004). Barium sulfate crystallization kinet-

ics in the used quenching salts treatment process. Chem.

Eng. Technol. 27(5), 559 – 568. DOI: 10.1002/ceat.200401878.

21. Matynia, A., Koralewska, J., Piotrowski, K. &

Ma³asiñska, M. (2004). Size-dependent growth rate of barium

sulphate in the used quenching salts processing technology.

Chemistry for Agriculture 5, 544 – 552.

22. Matynia, A., Piotrowski, K. & Koralewska, J. (2005).

Barium sulphate crystallization kinetics in the process of

barium ions precipitation by means of crystalline ammonium

sulphate addition. Chem. Eng. Proc. 44(4), 485 – 495.

DOI:10.1016/j.cep.2004.05.014.

23. Koralewska, J., Matynia, A., Piotrowski, K. &

Wierzbowska, B. (2006). Precipitation of barium ions with

solid ammonium sulfate in a continuous DTM crystallizer

with a liquid jet-pump of ascending suspension flow in a

mixing chamber. Chem. Proc. Eng. 4(27), 1555 – 1579.

24. Koralewska, J., Matynia, A., Piotrowski, K. &

Wierzbowska, B. (2006). Crystallization of barium sulphate

in a continuous DTM type crystallizer with a jet-pump of

descending suspension flow in a mixing chamber, in: Mate-

rials of the 17
th

 International Congress of Chemical and

Process Engineering CHISA, Process Engineering Publisher,

Praha, Czech Republic, CD-ROM No. 278.

25. Koralewska, J., Piotrowski, K., Wierzbowska, B. &

Matynia, A. (2008). Kinetics of barium sulphate reaction

crystallization in crystallizers with internal circulation. Braz.

J. Chem. Eng. 25(2), 375 – 387. DOI: 10.1590/S0104-

66322008000200015.

26. Hoskins, J.C. & Himmelblau, D.M. (1988). Artificial

neural network models of knowledge representation in

chemical engineering. Comp. Chem. Eng. 12(9/10), 881 – 890.

DOI:10.1016/0098-1354(88)87015-7.

27. Tambe, S.S., Kulkarni, B.D. & Deshpande, P.B. (1996).

Elements of Artificial Neural Networks with Selected Applications

in Chemical Engineering, and Chemical & Biological Sciences.

Louisville, USA: Simulation & Advanced Controls, Inc.

28. Meert, K. & Rijckaert, M. (1998). Intelligent modelling

in the chemical process industry with neural networks: a

case study. Comp. Chem. Eng. Suppl. 22(S1), S587-S593.

DOI:10.1016/S0098-1354(98)00104-5.

29. Piotrowski, K., Koralewska, J., Wierzbowska, B., Matynia,

A. & Piotrowski, J. (2007). Neural network model of barium

sulphate reaction-crystallization in DTM type crystallizer with

a jet-pump of descending suspension flow in a mixing cham-

ber – study on process sensitivity in respect to selected pa-

rameters, in: Proceedings of 34
th

 International Conference of

Slovak Society of Chemical Engineering, Slovak University of

Technology, Tatranske Matliare, Slovakia, CD-ROM – No 269.

30. Piotrowski, K., Pentoœ, K., Koralewska, J., Matynia, A.

& Piotrowski, J. (2007). Neural model of influence of se-

lected technological parameters on mean size and uniform-

ity of barium sulphate crystals produced in a reaction-crys-

tallization process in a DT MSMPR crystallizer, in: Proceed-

ings of XIX Polish Conference of Chemical and Process

Engineering, Rzeszów, Poland, III, 159 – 162.

31. Pentoœ, K., Piotrowski, K., Koralewska, J. & Matynia, A.

(2008). Multilayer perceptron as the tool for modeling of reac-

tion crystallization of barium sulphate in MSMPR crystallizer, in:

Proceedings of International Conference on Machine Learning

and Cybernetics, Kunming, China, 3413 – 3417.

32. Pentoœ, K., Piotrowski, K., Koralewska, J. & Matynia,

A. (2008). Parallel combination of feedforward artificial neural

networks for modeling of reaction-crystallization process of

barium sulphate precipitation in a DT MSMPR crystallizer.

In Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A. & ¯urada,

J. (Eds.), Computational Intelligence – Methods and Applica-

tions (pp. 57 – 68). Warszawa: Exit.

33. Piotrowski, K., Koralewska, J. & Matynia, A. (2008).

Jet-pump crystallizers in reaction-crystallization processes

with solid reagent – barium sulphate precipitation study, in:

Proceedings of International Symposium on Industrial Crys-

tallization ISIC17, Maastricht, Netherlands, 2, 795 – 802.

34. Piotrowski, K., Koralewska, J., Wierzbowska, B.,

Matynia, A. & Piotrowski, J. (2008). Continuous reaction-

crystallization of barium sulphate in DTM type crystallizers

– comparison of CSD predictions by neural network with

SDG kinetic models, in: Proceedings of the 35
th

 Interna-

tional Conference of Slovak Society of Chemical Engineer-

ing, Tatranske Matliare, Slovakia, CD-ROM No. 59.

35. Piotrowski, K., Koralewska, J., Wierzbowska, B. &

Matynia, A. (2008). Kinetics of reaction crystallization of

barium sulphate in DT MSMPR crystallizer in the presence

of potassium ions – an neural network approach, in: Mate-

rials of the 18
th

 International Congress of Chemical and

Process Engineering CHISA 2008, Process Engineering

Publisher, Praha, Czech Republic, CD-ROM No. 400.

36. Lanouette, R., Thibault, J. & Valade, J.L. (1999). Proc-

ess modeling with neural networks using small experimental

datasets. Comp. Chem. Eng. 23(9), 1167 – 1176.  DOI:10.1016/

S0098-1354(99)00282-3.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Ustawienia Adobe Distillera dla Acrobata 7)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


