The influence of admixtures on the course of hydrolysis of titanyl sulfate

Open access

The influence of admixtures on the course of hydrolysis of titanyl sulfate

The study focused on the question how admixtures, such as iron(II), iron(III), magnesium and aluminium salts influence the degree of TiOSO4 conversion to hydrated titanium dioxide (HTD). Titanyl sulfate solution, an intermediate product in the industrial preparation of titanium dioxide pigments by sulfate route was used. The admixtures were added to the solution and their concentration was gradually changed. It was found that hydrolysis clearly depended on Fe(II) and Fe(III) concentrations. The higher the concentration of iron(II) (up to 5 wt %) in the solution was, the higher conversion degree was achieved. A reverse relationship was observed concerning the influence of iron(III) introduced up to 1.5 wt %. The constant rates of both phases of titanyl sulfate hydrolysis (including the formation of an intermediate colloidal TiO2 and final products) depended on iron(II) and iron(III) content in the solution. The concentration of other constituents did not influence hydrolysis in the investigated part of the process (up to 2.6 wt % of Mg and up to 0.3 wt % of Al). However, the size of primary particles of the obtained TiO2·nH2O did not depend on the content of the above-mentioned constituents in the solution.

Juho-Pertti, J. (1992). Precipitation and Properties of TiO2 Pigments in the Sulfate Process 1. Preparation of the Liquor and Effects of Iron (II) in Isoviscous Liquor, Ind. Eng. Chem. Res. 31, 608-611. DOI: 10.1021/ie00002a024.

Solomka, M.M. & Aguirre, E.R. (1972). U.S. Patent No. 3,706,829. Washington, D.C.: U.S. Patent and Trademark Office.

Piccolo, L., Paolinelli, A. & Pellizzon, T. (1977). U.S. Patent No. 4,014,977. Washington, D.C.: U.S. Patent and Trademark Office.

Minczewski, J. & Marczenko, Z. (2004). Chemia Analityczna. Warsaw, Poland: PWN.

Szczepaniak, W. (1997). Metody instrumentalne w analizie chemicznej. Warsaw, Poland: PWN.

Chung, F.H. & Smith, D.K. (2000). Industrial application of X-ray diffraction. New York-Basel: Marcel Dekker, Inc.

Lawes, G. & Jame, A.M. (1987). Scanning electron microscopy and X-ray microanalysis. Chichester: John Wiley & Sons Ltd.

Gussman, N. (2005). Titanium Dioxide: From Black Sand to White Pigment. Chem. Eng. Prog. 101(6), 64.

Dąbrowski, W., Tymejczyk, A. & Lubkowska, A. (2001). Properties and application of titanium dioxide pigments. Police: Chemical Works "Police" S.A.

Cinafichi, G. L. (2004). Chinese TiO2 Markets. Presented at the UBS Grass Roots Chemical Conference, New Orlean, February 10.

Karvinen, S. (1995). Method of preparing titanium dioxide, U.S. Patent No. 5443811. Washington, D.C.: U.S. Patent and Trademark Office.

Przepiera, A. & Sosnowski, J. (1998). Możliwości udoskonalenia siarczanowej technologii produkcji ditlenku tytanu. Przem. Chem. 77/9, 328-334.

Skudlarski, K. (1974). Technologia produkcji tytanu i dwutlenku tytanu. Prace Naukowe Instytutu Chemii Nieorganicznej i Metali Pierwiastków Rzadkich, Politechnika Wrocławska, 22.

Ullmann's Encyclopedia of Industrial Chemistry. (2002). Weinheim: Wiley-VCH Verlag GmbH.

Wiederhöft, G., Bayer, E., MuUller, W.D. & Lailach G. (1991). U.S. Patent No. 4,988,495. Washington, D.C.: U.S. Patent and Trademark Office.

Winkler, J. (2003). Titanium Dioxide. Vincentz, Hannover.

Mitsch, F.J., & Kennedy B.J. (1999). Titanium Dioxide. US Chemicals-Major. 5, 35.

Titanium Dioxide Pigments. Manufacture and general properties. (1999). Lincoln House: England.

Dobrovolskii, I.P. (1988). Khimia i tekhnologia oksidnyh sojedinenii titana (The chemistry and technology of the oxide compounds of titanium). Sverdlovsk: UrO AN SSSR.

Blumenfeld, J. (1924). U.S. Patent No. 1,504,672. Washington, D.C.: U.S. Patent and Trademark Office.

Mecklenburg, W. (1930). U.S. Patent No. 1,758,528. Washington, D.C.: U.S. Patent and Trademark Office.

Bavykin, D.V., Dubovitskaya, V.P., Vorontsov, A.V. & Parmon, V.N. (2007). Effect of TiOSO4 hydrotermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity. Res. Chem. Intermediat. 33/3-5, 449-464. DOI: 10.1163/156856707779238702.

Sathyamoorthy, S., Moggridge, G.D., and Hounslow M.J. (2001). Particle Formation during anatase precipitation of seeded titanyl sulfate solution. Cryst. Growth Des. 1, 123-129. DOI: 10.1021/cg0000013.

Bavykin, D.V., Savinov, E.N. & Smirniotis, P.G. (2003). Kinetics of the TiO2 films growth at the hydrothermal hydrolysis of TiOSO4. React. Kinet. Catal. L. 79/1, 77-84. DOI: 10.1023/A:1024107701071.

Hidalgo, M.C. & Bahnemann, D. (2005). Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: Optimisation of the method and comparison with other synthetic routes. Appl. Catal. B-Envirom. 61, 259.

Grzmil, B., Grela, D. & Kic, B. (2006). Studies on the hydrolysis process of titanium sulfate compound. Polish Journal of Chemical Technology. 8(3), 19-21.

Grzmil, B., Grela, D. & Kic, B. (2008). Studies On The Hydrolysis Process of Titanium Sulfate Compounds. Chem. Pap. 62(1), 18-25. DOI: 10.2478/s11696-007-0074-8.

Tolchev, A.V., Pervushin, V. Yu. & Kleshchev, D.G. (2001). Hydrolysis of Titanium(IV) Sulfate Solutions under Hydrothermal Conditions. Russ. J. Appl. Chem. 74(10), 1631-1635.

Fogler, H.S. (2006). Elements of Chemical Reaction Engineering. Upper Saddle River: Pearson Education International.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 294 21
PDF Downloads 79 79 6