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Abstract. This paper aims to identify if regime-switching GARCH models perform better than single-
state GARCH models for the Romanian stock market. There will be used two approaches: in-sample and 
out-of-sample. All estimations are going to be made for the BET Index, which is the most relevant index 
from the selected market. The results will be ranked based on statistical loss functions for each of the 
two considered approaches. These rankings should ensure an accurate comparison for models’ 
performance and they succeeded to return about the same results as in the relevant literature. Hence, 
for the in-sample evaluation there was no model which performs best for all loss-functions, but one can 
notice that for the out-of-sample evaluation the regime-switching models performed better especially 
on short-term (1-day observation period). All of these results were used further to improve some risk 
management strategies based on VaR, for which the volatility could be estimated through regime-
switching GARCH models, than considering historical volatility. 
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Introduction   
Financial markets volatility is one of the most discussed topics by researchers interested in 
field of asset pricing and risk management. Hence, there were various papers in the last 
decades that focus on measuring and forecasting volatility and a lot of models have been 
developed in this way. 
 Volatility forecasting is a complex process for which a variety of models have been 
developed. Hence, through this paper we aim to apply some of the most innovative models 
for estimating volatility for the Romanian stock market. The literature is not very rich in the 
analysis of volatility on the Romanian stock market, much less when we are talking about 
the application of state-dependent GARCH models for the forecasting volatility. 
 Thus, one of the novelties brought by this paper would be the application of 
innovative models for estimating stock market volatility for the Romanian market. These 
models will also be used to calculate VaR (value-at-risk) for the BET Index for the out-of-
sample, which is also a way to test and rank them based on risk management functions. 
Our research is closely related to the one of Klaassen (2002), Marcucci (2005), and Patton 
(2011). This paper distinguishes from the above mentioned ones by bringing evidence from 
CEE countries instead on focusing on the U.S. Furthermore, our results for CEE markets are 
quite different from the ones reported for U.S., which suggests that further research is 
needed to determine the added value of regime-switching GARCH models. 
This paper is going to be organized as follows: Introduction, Literature Review, 
Methodology, Results and Conclusion. The first part, the introduction, presents the main 
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idea that is going to be developed in this paper and it tries to help the reader in his way of 
understanding how the paper is organized. Further, Literature Review, makes a brief 
incursion in what was written until now on this subject. 

The chapter related to methodology is probably the most important because it 
presents how the research was done and how to read the results. As it was earlier stated, 
this paper aims to evaluate the performance of different GARCH models in-sample and out-
of-sample using statistical loss functions and risk management functions. In last two 
chapters we summarized the results obtained and we tried to put them into the actual 
context on the capital markets.  

Forecast evaluation is a key step in any forecasting exercise. Granger and Poon’s 
(2003) statement “the success of a volatility model lies in its out-of-sample forecasting-
power” clearly underlines the fact that the main use of a volatility model is volatility 
forecasting and that the performance should be addressed in relation to forecast accuracy. 
There are several methods of evaluating the accuracy of forecasts. Some of them are 
statistical loss functions, tests of directional predictive ability tests of equal and superior 
predictive ability. 
 

Literature review  
A short brief of the literature should begin with ARCH models presented by Engle (1982). 
This research was followed by Bollerslev, Chou and Kroner (1992) which summarized all 
articles related to this topic. The most important contribution related to volatility modelling 
was brought by the family of GARCH models. These models assume that volatility is time- 
varying and is considered to be influenced by both, the past volatility and innovations. 
Moving a step further we get closer to the most recent improvement regarding the GARCH 
models: Regime-Switching GARCH. This extension of GARCH models is expected to bring 
more accurate forecasts because of its flexibility regarding the persistence of volatility. 

Our research is closely related to the one of Klaassen (2002), Marcucci (2005), and 
Patton (2011). This paper distinguishes from the above mentioned ones by bringing 
evidence from CEE countries instead on focusing on the U.S. Furthermore, our results for 
CEE markets are quite different from the ones reported for U.S., which suggests that further 
research is needed to determine the added value of regime-switching GARCH models. 

Taking the research of Engle (1982) to a next level, Taylor (1986) and Bollerslev 
developed the GARCH(p,q) model, where they considered in addition q lags from the past 
conditional variance. GARCH (p,q) offers flexibility for taking into account, both 
autoregressive and moving average components, in the equation of variance. 

Further, after the development of GARCH models in the last decade, there were a lot 
of extensions that have been introduced in order to solve some of the GARCH models’ 
problems. Considering that the classical GARCH models were symmetric models, they were 
unable to account for the leverage effect from series of stock return observed in capital 
markets, many researchers proposed some asymmetric GARCH models to solve this 
problem. So did the EGARCH (exponential GARCH) appeared, proposed by Nelson (1991) to 
solve the lack of ability of GARCH models to take into consideration the leverage effect on 
financial markets. Furthermore, Glosten, Jagannathan and Runkle (1993) proposed the GJR-
GARCH model (asymmetric model) that allows for different responses of the conditional 
variance in different ways to positive or to negative shocks. 
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The research regarding volatility modelling was continued through incorporating 
regimes or states into GARCH models, which makes it state dependent. Thus, how quick the 
variance will get to the long-run average will be state-dependent. So, a multi-state model 
should be more flexible than a single-state model. Hence, including regimes in a GARCH 
model may yield better estimation of volatility and could bring value added. 
 A first way of modelling volatility persistence could be considered using the 
approach proposed by Hamilton (1989), a regime-switching mode. This concept was 
further applied and developed in different papers, such as those of Pagan & Schwert (1990) 
or Hamilton&Susmel (1994), but these models tend to be rigid and they do not incorporate 
very well the idea of state-dependent volatility. 

The above presented models were extended by Gray (1996) and Klaassen (2002), 
taking into consideration that the volatility could vary between two states (low volatility 
regime and high volatility regime) and the probability of being in each state could be also 
time dependent. This was thought to be a better way to take into consideration the leverage 
effect and the results revealed that the new models performed better in terms of volatility 
forecasting. 
 

Methodology  
The methodology used in this paper is in accordance with the ones presented in the 
literature and it will be divided into three sections: description of GARCH models (single-
state models), description of Markov-Switching Models (MRS-GARCH) and the methodology 
based on which we will do the forecasting evaluation (volatility proxies, risk-management 
functions and statistical loss-functions). 
 
Classical models for forecasting volatility 
The first model that should be presented is the general GARCH (p,q) 
 GARCH (p,q) 
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will obtain an estimated positive conditional variance. 
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 The next model considered in this paper is the one developed by Glosten, Jagannathan 
and Runkle (1993) which tried to better take into consideration the leverage effect (GJR-
GARCH model): 
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 GJR-GARCH (1,1) 
   

           
 *   *      ++       

  *      +        
  (5) 

 
Regime switching models (MRS-GARCH) 
As it was presented above, previous models assumed asymmetry in volatility paths, but 
Hamilton and Susmel (1994) introduced the idea that volatility could be modelled as a 
regime-switching process. In their paper, they assumed that the jumps in volatility could be 
captured trough switches between the regression. So, it was introduced a discrete state 
variable    which is considered to follow an ith order Markov-chain. This means that    is 
supposed to be dependent only on the ith previous states. This is a short definition of a 
Markov-Chain.  
 Hamilton and Susmel’s approach became well-known in the literature, but it has its 
limitations, regarding the long lag structures. Hence, Gray (1996) and Klassen (2002) 
improved the approach brought in the literature by Hamilton and Susmel. They tried to 
solve in some manner the problem of making the model intractable and they suggested 
several estimation techniques. This kind of approach is going to be used also in this paper. 
 According to the above presented theory, MRS-GARCH assumes that a state variable 
exists, which is going to evolve according to a first-order Markov Chain with the transition 
probabilities defined as follows: 
   (    |      )       (6) 

The state variable    gives the probability of switching from state i at time t-1 into 
state j at time t, which taken together could form the transition matrix (7). This matrix is 
based on a 2-state Markov-Chain like it is presented below in figure 1. 
 

Figure 1. Two state volatility Markov Chain 

 
Source: Authors’ own computation. 
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Evaluation of the forecasting performances 
In this paper there will be two types of forecasts: one-step ahead volatility forecast and h-
step ahead volatility forecasts. The first one is obtained based only on the present time 
period as in the following example of GARCH (1,1) : 
  ̂   

            
  (8) 

Furthermore, we are going to use in our approach the h-step ahead volatility forecast 

presented as  ̂   | 
 . This measure of volatility is computed based on  the aggregated 

forecasts for the next “h” steps calculated at time “t”, i.e.  ̂   | 
   ∑  ̂   | 

  
   . We will obtain 

volatility forecasts for horizons of 1, 5 and 10-days by taking into consideration the 
aggregated volatility forecasts over the next 1, 5 and 10 days.  
We are going to use the following classical measure as a proxy for volatility when 
performing performance evaluation:  
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Evaluation methods 
Standard Statistical Loss Functions 
The forecasting performances of the models were evaluated based on statistical loss 
functions which are presented below. There literature does not present a loss functions 
which is the best in evaluating performance. Each of them has its drawbacks, but we could 
conclude that the model that performs best for most criteria is the most suited one. 
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Intuitively, the loss functions reveal us information about how reasonable the 
performances of the models were. The decision is simple: the model which obtain the 
smallest value of the loss functions is the one that performed the best. Although, different 
models could perform best at different statistical loss functions, we should make a rank 
taking into consideration all obtained results. 
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Risk management loss functions 
This research paper will conclude with a last way of comparing the models’ performance 
using risk management loss functions. It is easy to see why this approach has been chosen, 
especially in the current context where emphasis is placed on risk management, due to the 
recent turmoil in financial markets. During the 2008 crisis, it was proven that the VaR 
(Value at Risk) risk measure was not good enough, resulting in losses much higher than the 
expectations of portfolio managers. Those type of VaRs were constructed based on 
historical volatility or at least based on a volatility modeled with GARCH using a normal 
distribution. Hence, the decision to include this kind of approach was based on all these 
recent developments and the research published by Brooks and Persand (2003), in which 
they proposed the use of VaR-based loss functions for the ranking of GARCH models. The 
way this approach is going to be used will be presented below, starting with the definition 
of VaR for a model in general form: 
     at the time “t” for the model “i” with α% degree of confidence  : 
 

    
      

   ( )√    
  (17) 

Where  ( ) is the distribton function and “ ” is the investment horizon; in this research 
paper we will have n=1,5,10 days  
    ,  
    
  – the conditional mean used in VaR  

     
  is the forecasted volatility for model “i”.  

 Based on the VaR series we will apply some test that are going to bring into light 
some conclusions regarding how the models performed. The TUFF test (Time Until First 
Failure) represents the number of observations until the VaR was first surpassed by the 
real loss occurred on the market. The null hypothesis reveals that          and the 
alternative hyphothesis reveals that there is a significant difference between the two steps. 
Further, there could be applied the LR test (Loss ratio test), which has the following form: 
 

      ( ̂  ̂)       { ̂(   ̂) ̂  }      {
 

 ̂
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 ̂
)
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} (18) 

where  ̂ represents the number of observations until first failure.         is asymptotically 
distributed to   ( ). 
 
The data 
Firstly, we will have to describe the data series that are going to be used: daily data (closing 
prices) for the Romanian stock index BET in the period between 1st of January 2006 and 
31st of October 2017. These series will be modelled according to the methodology 
proposed by Marucucci (2005). From the series of daily prices we will obtain new series of 
returns according to the formula: 
       (   (  )     (    )) (19) 
The period of time for which the data was used was 01/01/2006 - 31/10/2017.Thus, we 
will have series for BET Index composed out of 2930 observations. Furthermore, these 
series had to be subdivided into two subintervals to enable the two types of analysis that 
are going to be implemented, in-sample and out-of-sample. The two subintervals are going 
to be constructed as follows: 
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BET Index : 150 observations for out-of-sample and 2780 observations for in-sample 

 
Results and discussions 
As we said before, there will be computed estimations for the most relevant stock exchange 
index from Romania: BET INDEX. The following models are going to be estimated GARCH, 
EGARCH, GJR-GARCH and MRS-GARCH using three types of distributions for models’ errors: 
Normal distribution, Student distribution and GED distribution. Also, there will be an in-
sample and an out-of-sample analysis for each model. The estimated parameters for the 
Romania stock exchange market, using single state GARCH models are presented in the 
following table: 

Table 1. Parameters estimated for single-state GARCH models 

Note: The parameters were estimated implementing MLE method in Matlab. This table presents the calculated t-Statistics 
for each parameter which is going to be compared to the tabelated value (1.956), in order to decide if the parameters are 
statistically significant. 
"*" denotes that we obtained a parameter which is not statistically significant for a threshold of 5%. 

Source: Authors’ own computations. 

 For all single state GARCH models was applied the same methodology. It is worth 
noting that almost all estimated parameters are significantly different from zero for a 
confidence level of 95% (conclusion based on the t-Student test, a two-sided test). As 
expected, the parameters that capture volatility’s persistence recorded high values for all 
models. Hence, the persistence coefficient hovers around 0.8 for all distributions used for a 
standard GARCH model. 
It is also noted that the "v" parameter for the shape of distribution, in the case of GED, takes 
values between 1 and 2 for all models, suggesting that the modeled a distribution was one 

Parameters GARCH 
GARCH-

t 
GARCH-

GED EGARCH 
EGARCH-

t 
EGARCH-

GED 
GJR-

GARCH 

GJR-
GARCH-

t 

GJR-
GARCH-

GED 

δ 0.0711 0.0802 0.0718 0.0623 0.0729 0.0644 0.062 0.0727 0.0648 

t-Stat 
            

3.26  
               

3.94  
                        

3.72  
              

2.94  
                  

3.68  
                         

3.39   1.66*  
                         

3.54  
                                

3.32  

α(0) 0.623 0.0666 0.0691 
             

(0.20) -0.162 -0.1817 0.0784 0.0719 0.0744 

t-Stat 
          

11.56  
               

6.30  
                        

6.47  
           

(25.56) -10.91 
                     

(12.15) 
                   

11.34  
                         

6.47  
                                

6.60  

α(1) 0.1652 0.1099 0.1588 
              

0.30  0.2387 0.2668 
                     

0.19  0.1812 0.1886 

t-Stat 
          

19.68  
               

9.20  
                      

10.08  
            

27.00  11.19 
                       

12.68  
                   

16.22  
                         

8.29  
                                

8.77  

β (1) 0.8138 0.833 0.8214 
              

0.91  0.8807 0.9089 0.8086 0.8248 0.7723 

t-Stat 
          

81.53  
             

46.03  
                      

45.02  
              

3.67  2.14 
                         

2.26  
                   

78.85  
                       

44.19  
                              

44.57  

ξ 
   

1.005 1.0226 1.0157 0.1863 0.1588 0.1701 

t-Stat 
 

                   
-    

                           
-    

          
222.28  

              
179.43  

                     
153.90  

                   
15.25  

                         
6.50  

                                
7.40  

v 
 

5.6511 1.3123   5.3263 1.311   5.6735 1.3133 

t-Stat 
 

             
11.12  

                      
40.37    

                
10.91  

                       
37.74    

                       
11.12  

                              
40.27  

Parameters 4 5 5 5 6 6 5 6 6 

LOGL -4628.9 -4503.5 -4520.1 -4609.3 -4488.5 -4506.4 
-

4626.3 -4499.8 -4517.1 
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with thicker tails than a normal one. Moreover, looking at the kurtosis for the models for 
which the Student distribution was applied, we will notice that applying leptocurtic 
distributions is more appropriate. The obtained values were 6.63 for GARCH, 7.53 for 
EGARCH and 7.52 for GJR-GARCH. 
 Further, this paper presents the results obtained by estimating the two-states 
GARCH models, based on Markov-Switching methodology:  
 

Table 2. Parameters estimated based on MRS-GARCH methodology 

Parameters MRS-N MRS-t MRS-GED 

δ (1) 0.0985 0.0457 0.1423 

t-Stat               2.25   1.08**   1.24**  

δ (2) -0.0743 -0.0723 -0.049 

t-Stat  -1.85*   -1.45**   -0.95**  

α (0,1) 0.2878 0.589 0.6623 

t-Stat               2.73   1.92*                     2.54  

α (0,2) 3.0746 0.009 0.0001 

t-Stat               4.82   1.01**   0.51**  

α (1,1) 0.1563 0.4979 0.5341 

t-Stat               2.04                 2.82                     2.58  

α (1,2) 0.3844 0.0825 0.0782 

t-Stat               4.04                 2.78                     2.52  

β (1) 0.4841 0.349 0.2964 

t-Stat               3.37   1.78*   1.33**  

β (2) 0.0353 0.9165 0.9423 

t-Stat  1.64**               37.28                  44.12  

p 0.9772 0.9723 0.9723 

t-Stat             88.85               47.91                  36.46  

q 0.996 0.9823 0.9923 

t-Stat             65.30             122.49                  99.23  

v (1) 
 

6.2342 1.563 

t-Stat 
 

               4.65                  19.23  

v(2) 
   

t-Stat 
   

Parameters 10 12 11 

LOGL -4538.1 -4480.7 -4492.3 

pi1 85% 61% 78% 

pi2 15% 39% 22% 

 Note: The parameters were estimated implementing MLE method in Matlab. This table presents the calculated t-Statistics 
for each parameter which is going to be compared to the tabelated value (1.956), in order to decide if the parameters are 
statistically significant. 
"*" denotes that we have obtained a parameter which is not statistically significant for a threshold of 5%. 
"**" denotes that we have obtained a parameter which is not statistically significant for a threshold of 10%. 

Source: Authors’ own computations. 
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Most of the estimated parameters are statistically significant for a significance 
threshold of 5%, except for parameters estimated for conditioned mean, but also the 
constant term for MRS-t and MRS-GED models. It should be noted that the state marked 
with (1) is the status for the low volatility regime, and the high volatility regime 
corresponds to state (2). It is very important to note that the conditional probabilities of 
being in state 1 and state 2 are statistically significant for all models. 

It is also very interesting that the volatility persistence of the low volatility regime is 
lower than in the case of the high volatility regime, except for the MRS-GARCH-N model, but 
the persistence parameter of regime 2 is not statistically significant. If we are talking about 
persistence, we observe another interesting element, which is in line with literature and 
expectations: persistence for the high volatility regime is higher than for a standard GARCH 
model, and in the case of the low volatility regime is lower. This information validates that 
the MRS-GARCH better takes into account the cluster effect. Exception again makes the 
estimations for MRS-GARCH-N. 
 As with single state GARCH models, the “v” values indicate that distributions that 
better shape extreme events are better suited, distributions having thicker tails than 
normal distribution.  It is very important to observe that the parameter for the mean 
equation has a negative value for the high volatility regime, suggesting a period of 
turbulence a period when  panic can be installed. Thus, it is confirmed that periods of high 
volatility may be associated with downward periods, confirming that the MRS-GARCH takes 
into consideration the leverage effect for financial markets. 
 The unconditional probabilities of being in state 1 or state 2 were calculated in the 
last two rows of the table and they are always higher for state 1, the low volatility regime. 
The explanation could be due to the low liquidity on the Bucharest Stock Exchange, the low 
number of participants, which may lead to a slow reaction of the local market to the drops 
on the foreign stock exchanges and implicitly to a lower volatility. 
 Further, there will be made comparisons between models using in-sample 
evaluation and estimated loss functions as they were presented in the previous chapter, in 
order to rank models based on in-sample performance. However, it should be remembered 
that the utility of a model is proven by the way it performs for the out-of-sample analysis, 
which is going to be made after the in-sample evaluation. 
 Various loss functions were calculated and models were hierarchized according to 
the obtained results. All calculations were done according to the presented methodology 
and the following table summarizes all obtained results: 
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Table 3. The GARCH models hierarchy based on in-sample loss functions 

 
Source: Authors’ own computations. 

 The conclusions are in line with the relevant literature (Brooks and Persan (2003)) 
and the results obtained by Juri Marcucci (2005). Thus, there is no model to perform best 
for all the considered criteria, but there is a clear tendency that suggests the superiority of 
asymmetric models, especially EGARCH-t and EGARCH-GED, followed by the MRS-GARCH 
models with Student or GED distributions. 

 In accordance with the methodology presented at the beginning of this paper, 
volatility estimates will be made using the 12 models, which will be compared by different 
statistical loss functions. The predicted ranges are 1 day, 5 days, 10 days. It would also be 
interesting to see if models that are top performers for in-sample evaluation will do the 
same for out-of sample evaluation. The relevant literature reveals that there is often no 
continuity. 

 After estimating all models for the three intervals, each model will get one point if it 
is ranked first at a statistical criteria. These points will lead us to grade it in the final. This 
grade will be used to select the best performer model for each interval. The results for the 
BET index for one day, 5 and 10 will be presented below: 

Table 4. One-day horizon out of sample evaluation 

 
Source: Authors’ own computations. 

 Following the one-day analysis, the MRS-GARCH-t model proves to be the best 
performer for all loss functions, revealing at the benefits of the two-regimes approach or 
the Markov-Switching methodology. 
 
 
 
 
 

In-Sample Nr. Par AIC Rank BIC Rank LOGL Rank MSE1 Rank QLIKE Rank R2LOG Rank MAD2 Rank MAD1 Rank HMSE Rank

GARCH-N 4 3.487 13 3.496 12 -4691.56 13 1.569 10 1.647 10 8.268 10 3.274 10 0.892 13 7.049 7

GARCH-t 5 3.396 7 3.407 3 -4567.78 7 1.535 7 1.648 12 8.201 7 3.214 4 0.882 3 7.351 9

GARCH-GED 5 3.406 9 3.417 8 -4581.43 9 1.538 8 1.647 11 8.188 4 3.222 5 0.882 2 7.388 10

EGARCH-N 5 3.473 11 3.484 11 -4671.49 11 1.491 3 1.632 4 8.275 12 3.177 2 0.887 7 6.36 1

EGARCH-t 6 3.385 3 3.398 1 -4551.30 3 1.496 2 1.635 6 8.279 13 3.183 3 0.889 8 6.805 5

EGARCH-GED 6 3.396 6 3.409 6 -4566.61 6 1.48 1 1.633 5 8.213 8 3.156 1 0.881 1 6.859 6

GJR-N 5 3.486 12 3.497 13 -4689.20 12 1.56 9 1.645 7 8.271 11 3.272 9 0.892 12 7.239 8

GJR-t 6 3.395 5 3.408 5 -4565.22 5 1.53 5 1.646 9 8.201 6 3.222 7 0.882 5 7.724 12

GJR-GED 6 3.405 8 3.418 9 -4579.18 8 1.532 6 1.646 8 8.189 5 3.227 8 0.882 4 7.708 11

MRS-GARCH-N 10 3.425 10 3.447 10 -4601.49 10 1.497 4 1.651 13 8.225 9 3.222 6 0.892 11 8.176 13

MRS-GARCH-t2 12 3.381 2 3.407 4 -4540.31 1 1.831 12 1.616 1 8.16 2 3.544 13 0.89 10 6.525 3

MRS-GARCH-t 11 3.38 1 3.405 2 -4540.72 2 1.78 11 1.618 3 8.172 3 3.489 11 0.89 9 6.474 2

MRS-GARCH-GED 11 3.39 4 3.414 7 -4553.11 4 1.83 13 1.617 2 8.12 1 3.539 12 0.886 6 6.53 4

Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD2 Rank MAD1 Rank HMSE Rank SR DA

GARCH-N 0.354 13 1.7067 13 0.3137 13 1.8179 13 0.5003 13 0.9027 13 0.4822 13 0.67 3.2767**

GARCH-t 0.2264 6 0.7713 8 0.2023 4 1.4056 6 0.4046 4 0.6639 4 0.4111 4 0.61 1.8848*

GARCH-GED 0.2293 8 0.7441 6 0.2259 11 1.4683 11 0.4225 10 0.6861 9 0.4353 11 0.63 2.6045**

EGARCH-N 0.2614 12 0.9459 12 0.2328 12 1.5157 12 0.4338 12 0.7378 12 0.4286 10 0.69 3.9979**

EGARCH-t 0.232 9 0.7744 9 0.2095 8 1.4228 7 0.4138 9 0.6841 8 0.4181 7 0.67 3.5677**

EGARCH-GED 0.2372 11 0.8167 11 0.2079 6 1.4235 8 0.4137 8 0.6905 10 0.4144 5 0.69 3.9979**

GJR-N 0.2328 10 0.7758 10 0.2226 10 1.4496 10 0.425 11 0.6968 11 0.4364 12 0.73 4.9005**

GJR-t 0.219 4 0.7032 4 0.208 7 1.3958 5 0.4135 7 0.67 7 0.4279 9 0.7 4.3453**

GJR-GED 0.2193 5 0.7145 5 0.2045 5 1.3864 4 0.4113 6 0.6683 5 0.4245 8 0.71 4.5236**

MRS-GARCH-N 0.1729 3 0.5384 3 0.1346 3 1.1461 3 0.3479 3 0.5479 3 0.4099 3 0.66 3.1885**

MRS-GARCH-t 0.1647 2 0.4953 1 0.1223 2 1.1128 2 0.3418 2 0.533 2 0.3766 1 0.66 3.2206**

MRS-GARCH-t2 0.227 7 0.7553 7 0.2104 9 1.4283 9 0.4091 5 0.6685 6 0.4178 6 0.59 1.6120

MRS-GARCH-GED 0.1639 1 0.5003 2 0.12 1 1.1003 1 0.3378 1 0.5279 1 0.3912 2 0.67 3.3927**
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Table 5. 5-day horizon out of sample evaluation 

 
Source: Authors’ own computations. 

Table 6. 10-day horizon out of sample evaluation 

 
Source: Authors’ own computations. 

 Along with the loss functions, there were presented the SR (Success Ratio) and DA 
(Directional Accuracy) statistics. One could observe that for all models was obtained a 
probability of more than 50% regarding the prediction of the direction in which the 
volatility will move in the next day. This statement is also supported by DA's calculation, 
which is significant for all models. Hence, a first step is made in demonstrating the 
usefulness of GARCH models and their applicability to predict volatility, especially when 
taking into account two volatility regimes. 

 For the 5 and 10 days intervals, none of the models scored better than MRS-GARCH-t 
did for one-day interval. This reveals the fact that the two-states approach based on 
Markov-Switching methodology brings added-value and that the MRS-GARCH-t could be 
used for estimations for short periods as one day interval.  

 An interesting fact to follow is the model that performs best for the 10-day interval 
(EGARCH-t). This result is consistent with Dacco and Satchell (1999) and the intuition 
based on behavioral finance theory, according to which simpler models should perform 
better for out-of-sample, but also for longer predictions. Their main advantage is that they 
are easier to implement than other models and are widely used (the more appropriate 
English concept would be "more parsimonious models"). Thus, for the one-day interval, the 
more complex MRS-GARCH-t model does better, but for longer periods of prediction, the 
EGARCH-t proves to be the winning solution. Also, it should be noted that asymmetric Garch 
models performed than standard Garch models in every situation, revealing the benefit of 
better taking into account the leverage effect from the financial markets. 

 The analysis will be continued through a part of this paper which focuses on  a VaR-
based risk-management functions. The indicators computed and the manner in which this 
was done was presented in the previous chapter related to research methodology. 

Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD2 Rank MAD1 Rank HMSE Rank SR DA

GARCH-N 0.5859 6 5.3523 6 1.2622 6 2.1104 6 0.6698 6 1.8296 6 0.4083 6 0.71 4.6790**

GARCH-t 0.5482 5 4.8216 4 1.2467 5 2.056 5 0.6499 5 1.7534 5 0.3971 5 0.71 4.6768**

GARCH-GED 0.5471 4 4.8855 5 1.2427 4 2.0404 4 0.6446 4 1.7431 4 0.3948 4 0.72 4.8643**

EGARCH-N 0.4985 3 4.5006 3 1.1927 3 1.9737 3 0.5796 3 1.5804 3 0.3415 2 0.74 5.4167**

EGARCH-t 0.4736 1 4.0795 1 1.1799 1 1.9123 1 0.562 1 1.5147 1 0.3338 1 0.74 5.4167**

EGARCH-GED 0.4664 2 4.0831 2 1.19 2 1.931 2 0.5756 2 1.5458 2 0.3443 3 0.74 5.4211**

GJR-N 0.7991 12 7.7308 12 1.3677 12 2.6102 12 0.8063 12 2.2934 12 0.4748 12 0.75 5.6126**

GJR-t 0.7411 7 6.8925 7 1.3449 10 2.5224 11 0.7764 10 2.1784 9 0.4614 10 0.73 5.0489**

GJR-GED 0.745 8 7.022 8 1.3435 9 2.5211 10 0.7754 9 2.1811 10 0.4596 9 0.73 5.2385**

MRS-GARCH-N 1.2338 13 17.281 13 1.4853 13 3.0674 13 0.9701 13 3.049 13 0.5335 13 0.69 4.2282**

MRS-GARCH-t2 0.7545 10 7.432 10 1.3372 8 2.4048 8 0.7639 8 2.1737 8 0.4471 8 0.63 2.6941**

MRS-GARCH-t 0.7499 9 7.6026 11 1.3258 7 2.3757 7 0.7516 7 2.1477 7 0.4377 7 0.63 2.5993**

MRS-GARCH-GED 0.7766 11 7.3506 9 1.3662 11 2.5007 9 0.7995 11 2.2556 11 0.4736 11 0.64 3.0848**

Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD2 Rank MAD1 Rank HMSE Rank SR DA

GARCH-N 3.9958 6 116.92 6 2.726 8 9.0764 8 1.809 7 9.4831 6 0.5458 8 0.55 2.6126**

GARCH-t 3.5662 4 98.493 4 2.6795 4 8.8287 4 1.699 4 8.6949 4 0.5221 5 0.57 2.9715**

GARCH-GED 3.6179 5 101.29 5 2.683 5 8.8525 5 1.7079 5 8.7736 5 0.5232 6 0.56 2.8524**

EGARCH-N 0.7933 2 10.126 2 2.2218 2 6.615 2 0.5171 1 1.9421 1 0.1819 2 0.55 2.4427**

EGARCH-t 0.8279 1 10.06 1 2.2214 1 6.5939 1 0.5212 2 1.9613 2 0.183 3 0.55 2.4427**

EGARCH-GED 0.7879 3 11.114 3 2.2275 3 6.6286 3 0.5493 3 2.1163 3 0.1814 1 0.55 2.3206*

GJR-N 5.0327 12 159.23 12 2.8293 12 9.8458 12 2.0481 12 11.2185 12 0.5909 12 0.52 1.9503*

GJR-t 4.5129 9 134.69 7 2.779 9 9.5818 10 1.9265 9 10.2976 9 0.5673 9 0.54 2.1979*

GJR-GED 4.5864 10 138.66 10 2.7848 10 9.6184 11 1.941 10 10.4168 10 0.5696 10 0.54 2.1979*

MRS-GARCH-N 7.3716 13 311.12 13 2.9899 13 10.849 13 2.4599 13 14.8247 13 0.6521 13 0.48 1.4821

MRS-GARCH-t2 4.1598 8 134.76 8 2.7193 7 8.9442 7 1.814 8 9.7832 8 0.5346 7 0.59 3.3266**

MRS-GARCH-t 4.1156 7 137.75 9 2.6976 6 8.9269 6 1.7679 6 9.5637 7 0.5181 4 0.53 2.0745*

MRS-GARCH-GED 4.5945 11 142.32 11 2.7914 11 9.3317 9 1.9624 11 10.6033 11 0.576 11 0.48 0.7813
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Table 7. Risk Management Functions (BET Index - out of sample evaluation) 
Forecasting Horizon 
(days) 1 5 10 

Model TUFF PF(%) RANK TUFF PF(%) RANK TUFF PF(%) RANK 

GARCH-N 3 4.545 3 38 4.688 3 36 1.626 3 

GARCH-t 3 3.03 2 38 3.906 2 37 0.815 2 
GARCH-GED 3 4.545 3 38 4.688 3 36 1.626 3 

EGARCH-N 3 3.03 2 38 3.906 2 33 10.569 6 

EGARCH-t 3 3.03 2 38 3.906 2 33 8.13 4 

EGARCH-GED 3 3.03 2 38 3.906 2 33 8.756 5 
GJR-GARCH-N 3 3.03 2 38 3.906 2 36 1.626 3 

GJR-GARCH-t 3 3.03 2 38 3.125 1 37 0.815 2 

GJR-GARCH-GED 3 3.03 2 38 3.906 2 36 1.626 3 

MRS-GARCH-N 3 3.03 2 38 3.906 2 37 0.813 1 
MRS-GARCH-t 3 2.273 1 38 3.906 2 37 0.815 2 

MRS-GARCH-t2 3 3.03 2 38 3.906 2 37 0.903 3 

MRS-GARCH-GED 3 3.03 2 38 4.688 3 37 1.626 3 

Source: Authors’ own computations. 

 In the above table, it can be noticed that the calculated time until first failure (TUFF) 
is 3 days, suggesting that the threshold established by the VaR (95%) was reached for the 
first time after 3 days. As was done for the other analyzes, the models were hierarchized. 
One can notice that the best results were obtained by the models with two volatility 
regimes, especially by MRS-GA RCH-t. The probability of reaching VaR (95%) was the 
smallest for this model, overperforming for both, the one-day and 10-day range. 
 Also, we can get some conclusions by interpreting the PF indicator (probability of 
failure), which reveals how probable is to reach the VaR calculated based on different 
GARCH models. This indicator highlights also that MRS-GARCH-t is the best model, because 
it has the lowest probability of failure (2.273%), significantly lower than other models 
which are coming from behind. 
 

Conclusions 
As it was stated at the beginning of this paper, it aimed to test the accuracy of various types 
of single-state GARCH  models, but also some forms of GARCH that depend on two volatility 
regimes. The objective was to identify the best model for each of the four considered 
prediction intervals and the results did not disappoint. Most of them were consistent with 
the studies in the relevant literature and they also feature distinctive elements. There 
elements can be justified by  the specificities of the Romanian capital market (less liquid 
market, where companies rely mainly on financing from the banking system and less on 
financing through stock exchange). 
 The first conclusion was revealed by the in-sample analysis, observing the clear 
superiority of the asymmetric GARCH models (EGARCH), followed by MRS-GARCH. Given 
that the endpoint of developing any model is its use for forecasting, this paper went further 
and built an out-of-sample analysis for the same types of models. Based on this analysis, it 
was found that the two-state models perform better for short periods of time (one-day 
horizon). It is also interesting to note that each model chosen as the best for its horizons has 
had the errors distributed according to a Student distribution (distribution that has thicker 
queues - better captures extreme events). 
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 It is also worth noting that these results were obtained in a highly volatile 
environment generated by extreme and unexpected events such as the outcome for Brexit 
referendum in UK or the presidential election’s outcome in the United States. All of these 
contribute to hampering the volatility estimations through Garch models which rely on 
historical data and historical patterns. This is one more reason to believe that the obtained 
results for out-of-sample evaluation are very close to reality and the two-states models 
perform better, but just for short periods of time. 
 There are a lot of ways this research could be continued and further developed, but 
the present results lead us to the idea that regime-switching models do improve the quality 
of volatility forecasts. It is unanimously accepted that there is no volatility forecasting 
model that predicts better in any situation, but the multi-state models can adapt to different 
market situations and can lead to better results. Hence, adapting the actual methodology for 
three-state or four-state models with different error distributions could bring value-added 
further and could represent a very important contribution to the present literature. 
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