Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

Open access

Abstract

The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

1. Wang W., Wang S., Ma X. and Gong J., Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703–3727 (2011).

2. Olah G. A., Goeppert A. and Prakash G. K. S., Chemical Recycling of Carbon Dioxide to Methanol and Dimthyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons, J. Org. Chem., 74, 487–498 (2009).

3. Xu X. D. and Moulijn J. A., Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products, Energy Fuels, 10, 305–325 (1996).

4. Yu C-H, Huang C-H, Tan C-S, A Review of CO2 Capture by Absorption and Adsorption, Aerosol and Air Quality Research, 12, 745–769 (2012).

5. Albo, A., Luis, P. and Irabin, A., Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. Ind. Eng. Chem. Res., 49, 11045–11051 (2010).

6. Riduan S. N. and Zhang Y. G., Recent developments in carbon dioxide utilization under mild conditions, Dalton Trans., 39, 3347–3357 (2010).

7. Tollefson J., Growing agricultural benefits for climate. Nature, 462, 966–967 (2009).

8. Yang H., Xu Z., Fan M., Gupta R., Slimane R. B., Bland A. E. and Wright I., J. Environ. Sci., 20, 14–27 (2008).

9. Mikkelsen M., Jorgensen M. and Krebs F. C., The teraton challenge. A review of fixation and transformateion of carbon dioxide. Energy Environ. Sci., 3, 43–81 (2010).

10. Hunt A. J., Sin E. H. K., Marriott R. And Clark, J. H., Generation, Capture, and Utilization of Industrial Carbon Dioxide, ChemSusChem, 3, 306–322 (2010).

11. Ferey G., Serre C., Devic T., Maurin G., Jobic H., Llewellyn P. L., Weireld G. De, Vimont A., Daturi M. and Chang J. S., Chem. Soc. Rev., 40, 550–562 (2011).

12. Song C. S., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, 115, 2–32 (2006).

13. Centi G. and Perathoner S., Carbon dioxide utilization for global sustainability, Stud. Surf. Sci. Catal., 153, 1–8 (2004).

14. Ma J., Sun N. N., Zhang X. L., Zhao N., Mao F. K., Wei W. and Sun Y. H., A short review of catalysis for CO2 conversion, Catal. Today, 148, 221–231 (2009).

15. Baiker A., Utilization of carbon dioxide in heterogeneous catalytic synthesis, Appl. Organomet. Chem., 14, 751–762 (2000).

16. Chueh W. C., Falter C., Abbott M., Scipio D., Furler P., Haile S. M. and Steinfeld A., High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria, Science, 330, 1797–1801 (2010).

17. Zhang Z. F., Hu S. Q., Song J. L., Li W. J., Yang G. Y. and Han B. X., Hydrogenation of CO2 to Formic Acid Promoted by a Diamine-Functionalized Ionic Liquid, ChemSusChem, 2, 234–238 (2009).

18. Federsel C., Jackstell R. and Beller M., State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide, Angew. Chem. Int. Ed., 49, 6254–6257 (2010).

19. Johnson T. C., Morris D. J. and Wills M., Hydrogen generation from formic acid and alcohols using homogeneous catalysts, Chem. Soc. Rev., 39, 81–88 (2010).

20. Srivastava V, In Situ Generation of Ru Nanoparticles to Catalyze CO2 Hydrogenation to Formic Acid, Catalysis Letters 2014, 144, 1745-1750.

21. Srivastava V, Ru- exchanged MMT clay with functionalized ionic liquid for selective hydrogenation of CO2 to Formic acid, Catalysis Letters 2014, 144(12), 2221-2226.

22. Inoue Y., Izumida H., Sasaki Y. and Hashimoto H., Catalytic fixation of carbon dioxide to formic acid by transition metal complexes under mild conditions, Chem. Lett., 863–864 (1976).

23. Ezhova N. N., Kolesnichenko N. V., Bulygin A. V., Slivinskii E. V. and Han S., Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex, Russ. Chem. Bull., 51, 2165–2169 (2002).

24. Gao Y., Kuncheria J. K., Jenkins H. A., Puddephatt R. J. and Yap G. P. A., The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst, J. Chem. Soc., Dalton Trans., 3212–3217 (2000).

25. Tai C. C., Pitts J., Linehan J. C., Main A. D., Munshi P. and Jessop P. G., In situ formateion of ruthenium catalysts for the homogeneous hydrogenation of carbon dioxide. Inorg. Chem., 41, 1606–1614 (2002).

26. Man M. L., Zhou Z. Y., Ng S. M. and Lau C. P., Synthesis, characterization and reactivity of heterobimetallic complexes (η5-C5R5)Ru(CO)(μ-dppm)M(CO)25-C5H5)(R = H, CH3; M = Mo, W). Interconversion of hydrogen/carbon dioxide and formic acid by these complexes, Dalton Trans., 3727–3735 (2003).

27. Jessop P. G., Hsiao Y., Ikariya T. and Noyori R., Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formatees, and Formamides, J. Am. Chem. Soc., 118, 344–355 (1996).

28. Tai C. C., Chang T., Roller B. and Jessop P. G., High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide. Inorg. Chem., 42, 7340–7341 (2003).

29. (a) Tsai J. C. and Nicholas K. M., Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid. J. Am. Chem. Soc., 114, 5117–5124 (1992). (b) Ng S. M., Yin C. Q., Yeung C. H., Chan T. C. and Lau C. P., Ruthenium-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid in Alcohols, Eur. J. Inorg. Chem., 1788–1793 (2004).

30. Yin C. Q., Xu Z. T., Yang S. Y., Ng S. M., Wong K. Y., Lin Z. Y. and Lau C. P., Promoting Effect of Water in Ruthenium-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid, Organometallics, 20, 1216–1222 (2001).

31. Munshi P., Main A. D., Linehan J. C., Tai C. C. and Jessop P. G., Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines. J. Am. Chem. Soc., 124, 7963–7971 (2002).

32. Iwatani M., Kudo K., Sugita N. and Takezaki Y., Kinetics of the carboxylation of cyclohexanone in dimethyl sulfoxide solution containing 1,8-diazabicyclo[5.4.0]undec-7-ene and carbon dioxide. J. Jpn. Pet. Inst., 21, 290–296 (1978).

33. Pérez E. R., da Silva M. O., Costa V. C., Rodrigues-Filho U. P. and Franco D. W., Efficient and clean synthesis of N-alkyl carbamates by transcarboxylation and O-alkylation coupled reactions using a DBU–CO2 zwitterionic carbamic complex in aprotic polar media. Tetrahedron Lett. 43, 4091–4093 (2002).

34. Jessop P. G., Homogeneous catalysis using supercritical fluids: Recent trends and systems studied J. Supercrit. Fluids, 38, 211–231 (2006).

35. Jessop P. G., Joo F. and Tai C. C., Recent advances in the homogeneous hydrogenation of carbon dioxide, Coord. Chem. Rev., 248, 2425–2442 (2004).

36. Jessop P. G., Ikariya T. and Noyori R., Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature, 368, 231–233 (1994).

37. Thomas C. A., Bonilla R. J., Huang Y. and Jessop P. G., Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes — Effect of gas pressure and additives on rate in the liquid phase, Can. J. Chem., 79, 719–724 (2001).

38. Himeda Y., Onozawa-Komatsuzaki N., Sugihara H. and Kasuga K., Simultaneous Tuning of Activity and Water Solubility of Complex Catalysts by Acid−Base Equilibrium of Ligands for Conversion of Carbon Dioxide, Organometallics, 26, 702–712 (2007).

39. Thai T. T., Therrien B. and Suss-Fink G., Arene ruthenium oxinato complexes: Synthesis, molecular structure and catalytic activity for the hydrogenation of carbon dioxide in aqueous solution, J. Organomet. Chem., 694, 3973–3981 (2009).

40. Sanz S., Azua A. and Peris E., ‘(η6-arene)Ru(bis-NHC)’ complexes for the reduction of CO2 to formatee with hydrogen and by transfer hydrogenation with iPrOH, Dalton Trans., 39, 6339–6343 (2010).

41. Himeda Y., Conversion of CO2 into Formatee by Homogeneously Catalyzed Hydrogenation in Water: Tuning Catalytic Activity and Water Solubility through the Acid–Base Equilibrium of the Ligand Eur. J. Inorg. Chem., 2007, 3927–3941 (2007).

42. Tanaka R., Yamashita M. and Nozaki K., Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)−Pincer Complexes, J. Am. Chem. Soc., 131, 14168–14169 (2009).

43. Sanz S., Benitez M. and Peris E., A New Approach to the Reduction of Carbon Dioxide: CO2 Reduction to Formatee by Transfer Hydrogenation in i PrOH, Organometallics, 29, 275–277 (2010).

44. Himeda Y., Onozawa-Komatsuzaki N., Sugihara H. and Kasuga K., Recyclable Catalyst for Conversion of Carbon Dioxide into Formatee Attributable to an Oxyanion on the Catalyst Ligand, J. Am. Chem. Soc., 127, 13118–13119 (2005).

45. Hayashi H., Ogo S. and Fukuzumi S., Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions, Chem. Commun., 2714–2715 (2004).

46. Merz K., Moreno M., Loffler E., Khodeir L., Rittermeier A., Fink K., Kotsis K., Muhler M. and Driess M., Lithium-promoted hydrogenation of carbon dioxide to formatees by heterobimetallic hydridozinc alkoxideclusters, Chem. Commun., 73–75 (2008).

47. Krocher O., Koppel R. A. and Baiker A., Highly active ruthenium complexes with bidentate phosphine ligands for the solvent-free catalytic synthesis of N,N-dimethylformamide and methyl formatee, Chem. Commun., 1997, 453–454 (1997).

48. Fornika R., Gorls H., Seemann B. and Leitner W., Complexes [(P2)Rh(hfacac)](P2= bidentate chelating phosphane, hfacac = hexafluoroacetylacetonate) as catalysts for CO2 hydrogenation: correlations between solid state structures, 103Rh NMR shifts and catalytic activities, J. Chem. Soc., Chem. Commun., 1479–1481 (1995).

49. Yu K. M. K., Yeung C. M. Y. and Tsang S. C., Carbon Dioxide Fixation into Chemicals (Methyl Formatee) at High Yields by Surface Coupling over a Pd/Cu/ZnO Nanocatalyst, J. Am. Chem. Soc., 129, 6360–6361 (2007).

50. Tsang S. C., Bulpitt C. D. A., Mitchell P. C. H. and Ramirez-Cuesta A. J., Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor, J. Phys. Chem. B, 105, 5737–5742 (2001).

51. Zhang Y., Fei J., Yu Y. and Zheng X., Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance, Catal. Commun. 5, 643–646 (2004).

52. Zhang Z. F., Xie E., Li W. J., Hu S. Q., Song J. L., Jiang T. and Han B. X., Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid, Angew. Chem., Int. Ed., 47, 1127–1129 (2008).

53. Whittlesey M. K., Perutz R. N. and Moore M. H., Facile Insertion of CO2 into the Ru−H Bonds of Ru(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2): Identification of Three Ruthenium Formatee Complexes, Organometallics, 15, 5166–5169 (1996).

54. Musashi Y. and Sakaki S., Theoretical Study of Ruthenium-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Reaction Mechanism Involving a New Type of σ-Bond Metathesis, J. Am. Chem. Soc., 122, 3867–3877 (2000).

55. Ohnishi Y. Y., Matsunaga T., Nakao Y., Sato H. and Sakaki S., Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid. Theoretical Study of Real Catalyst, Ligand Effects, and Solvation Effects, J. Am. Chem. Soc., 127, 4021–4032 (2005).

56. Urakawa A., Jutz F., Laurenczy G. and Baiker A., Carbon Dioxide Hydrogenation Catalyzed by a Ruthenium Dihydride: A DFT and High-Pressure Spectroscopic Investigation, Chem.–Eur. J., 13, 3886–3899 (2007).

57. Musashi Y. and Sakaki S., Theoretical Study of Rhodium(III)-Catalyzed Hydrogenation of Carbon Dioxide into Formic Acid. Significant Differences in Reactivity among Rhodium(III), Rhodium(I), and Ruthenium(II) Complexes, J. Am. Chem. Soc., 124, 7588–7603 (2002).

58. Leitner W., Dinjus E. and Gaßner F., Activation of carbon dioxide, J. Organomet. Chem., 475, 257–266 (1994).

59. Hutschka F., Dedieu A., Eichberger M., Fornika R. and Leitner W., Mechanistic Aspects of the Rhodium-Catalyzed Hydrogenation of CO2 to Formic Acid: A Theoretical and Kinetic Study, J. Am. Chem. Soc., 119, 4432–4443 (1997).

60. Urakawa A., Iannuzzi M., Hutter J. and Baiker A., Towards a Rational Design of Ruthenium CO2 Hydrogenation Catalysts by Ab Initio Metadynamics, Chem.–Eur. J., 13, 6828–6840 (2007).

61. Getty A. D., Tai C. C., Linehan J. C., Jessop P. G., Olmstead M. M. and Rheingold A. L., Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: A Mechanistic Investigation Using High-Pressure NMR Spectroscopy, Organometallics, 28, 5466–5477 (2009).

62. Ahlquist M. S. G., Iridium catalyzed hydrogenation of CO2 under basic conditions—Mechanistic insight from theory, J. Mol. Catal. A: Chem., 324, 3–8 (2010).

63. Ohnishi Y. Y., Nakao Y., Sato H. and Sakaki S., Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide to Formic Acid. Theoretical Study of Significant Acceleration by Water Molecules, Organometallics, 25, 3352–3363 (2006).

64. Ogo S., Kabe R., Hayashi H., Harada R. and Fukuzumi S., Mechanistic investigation of CO2 hydrogenation by Ru(ii) and Ir(iii) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step, Dalton Trans., 4657–4663 (2006).

65. Cotton F. A., Wilkinson G., Murillo C. A. and Bochmann M., Advanced Inorganic Chemistry, Wiley-Interscience, 6, 226–227 (1999).

Journal Information

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 328 81
PDF Downloads 129 129 20