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1. Introduction
Brushless DC (BLDC) motors are increasingly used in recent years. Simple methods of developing the control 
system (high similarity in the development of the control system as in the motor with mechanical commutator) have 
resulted in driving with BLDC motors much more advantageous than that with the classic DC motors. The main 
advantages of the BLDC motors are high efficiency, high durability and elimination of the mechanical commutator 
with brushes. The disadvantage of the BLDC motors is the pulsation of the generated electrical torque. The 
increase in interest in the BLDC motor drive results in the search for new motor control methods and the estimation 
of the rotor position in order to eliminate Hall sensors. One of the methods of position estimation is the application 
of a Kalman filter, which plays a significant role in industry and is still the subject of scientific research (Aishwarya 
and Jayanand, 2016; Lenine et al., 2007; Terzic and Jadric, 2001; Zabalawi and Nasiri, 2007). The utilisation of 
estimated speed and angle can be used as a feedback for BLDC motor control system, which has already been 
presented in Lenine et al. (2007). There are still ongoing studies to improve the control using the optimal estimator, 
which was presented in Aishwarya and Jayanand (2016), where the PFC buck-boost converter and three-phase 
bridge were developed. In recent years, research related to observers are heading to identify fault in BLDC motors, 
described in Eissa et al. (2015) and El Mekki and Ben Saad (2016). We can also find H infinity approach for 
realisation of robust sensorless drive (Vinida and Chacko, 2016). The aim of this paper was dedicated to the 
application of Kalman filter in the BLDC motor. A precise investigation will be performed to achieve determination 
of best covariance matrix.
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Abstract:  The purpose of this paper was to present a method for the estimation of the rotor speed and position of brushless DC (BLDC) motor. 
The BLDC motor state equations were developed, and the model was discretised. Extended Kalman filter has been designed to observe 
specific states from the state vector, needed for the sensorless control (rotor position) and to determine the speed, which may be 
useful to use as a feedback for the controller. A test was carried out to determine the noise covariance matrices in a simulation manner.
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2. BLDC motor model
Three-phase permanent magnet BLDC motor can be modelled as a series connection of resistance, induction and 
voltage source. Back EMF represents the effect of the rotor on the stator side. The mathematical model can be 
represented as a differential equation with constant parameter values (Aishwarya and Jayanand, 2016; Jethwani 
et al., 2016; Lenine et al., 2007; Terzic and Jadric, 2001; Zabalawi and Nasiri, 2007). The voltage matrix equation 
for a three-phase BLDC motor is as follows (assuming symmetries in every phase):
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The stator currents of the motor satisfy the following equation:

 i i i  0a c b+ + =  (2)

where RS is the phase resistance, L the one-phase inductance (LS – M), LS the stator self-inductance and M the 
mutual inductance.

The electromotive force has a trapezoidal shape, and its values can be recorded on the basis of Table 1. 

Function fb(φ) and fc(φ) are shifted by 2
3
π and 

4
3
π, respectively.

Table 1. The values of the electromotive force as a function of the elctrical angle 
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The maximum value of the electromotive force is given by the following formula:

 E k peak w mω=  (3)

where wm is the mechanical speed and kw the back EMF constant.
The values of electromotive force as a function of the electric angle from Table 1 and equation (3) can be written as:

 ϕ=e E f  ( )a peak a  (4)

 ϕ=e E f  ( )b peak b  (5)
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 ϕ=e E f  ( )c peak c  (6)

The value of the electrical torque generated by the BLDC motor can be represented by the following 
equation (Aishwarya and Jayanand, 2016; Lenine et al., 2007; Terzic and Jadric, 2001; Zabalawi and  
Nasiri, 2007):

 T
e i e i e i  

e
a a b b c c

mω
=

+ +  (7)

By substituting equations (4)–(6) to (7), the equation for torque is as follows:

 ϕ ϕ ϕ( )= + +T k f i f i f i( )  ( )  ( )e w a a b b c c  (8)

The mechanical equation of the motor model is given by Aishwarya and Jayanand (2016) as follows:

 J
d
dt

T T  m
e l

ω
= −  (9)

Numerous publications describe the mechanical equation together with the coefficient of friction, which is a 
simplification, because the model becomes a two-inertia system by replacing integration.

The value of th electrical angle is calculated based on the following equation (Eissa et al., 2015; Lenine et al., 
2007; Terzic and Jadric, 2001; Zabalawi and Nasiri, 2007):

 d
dt

n p m
ϕ ω=  (10)

where np are pole pairs.
The equations were implemented in the MATLAB Simulink programme using the SimPowerSystems library 

(Matlab Simulink, 2018 ). A model of a resistance, inductance and electromotive force (RLE) system with a controlled 
voltage source was a model of a resistance, inductance and electromotive force (RLE) system with a controlled 
voltage source was developed (Jethwani et al., 2016). The trapezoidal voltage shape was obtained by writing f(φ) 
values in the Lookup table (based on Table 1). Fig 1. shows brushless dc motor model.

Fig. 1. BLDC motor model – Simulink implementation. Model inputs (L1, L2, L3) are from power electronic DC/AC converter

Based on previous equations, a full BLDC motor model can be written as a state equation (Aishwarya and Jayanand, 
2016; Terzic and Jadric, 2001; Zabalawi and Nasiri, 2007):
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where the input and output matrices are given as follows:
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(14), (15)

Feedforward matrix (i.e. D) is full of zeroes in the BLDC motor model. If the continuous system is sampled with 
interval, which is at least ten times shorter than the motor stator time constant, then discrete state space system 
can be obtained by Euler’s method (Terzic and Jadric, 2001). Equations (11) and (12) after discretisation over time, 
sampling TS, takes the following form:

 + = + + = +k T k T k k kx I A x Bu A x B u( 1) ( ) ( ) ( ) ( ) ( )s s D D  (16)

 k ky Cx( ) ( )=  (17)
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Discrete model equations (16) and (17) are used to develop a Kalman filter to estimate the states of the motor. The 
BLDC motor parameters used in further simulations are included in Table 2.

Table 2. Motor specification

Motor parameter Symbol Value Unit

Resistance per phase RS 4.95 Ω
Inductance (LS – M) L 2.1 mH
Back EMF constant kw 55.21 mVs
Moment of inertia J 16.17 mkgm2

No of pole pair np 4 –

The simulation was run for half a second. The motor was driven at no load till 0.1 sec and then a load torque of 
0.38 Nm was introduced. Figure 2 presents mechanical speed and torque as function of time.

Fig. 2. Mechanical speed and driving torque as function of time

It is important to notice that the load torque value will be treated as the known input during simulation, but in a real 
drive application, a load torque value is seldom known. It is possible to measure the value of the torque, but the 
sensor cost is usually high, which causes a high price for the drive. A possible solution is to treat our load torque not 
as an input but as disturbance to be observed by the observer.

3. Extended Kalman filter (EKF)
According to the presented solution by Rudolf Emil Kalman, to develop a filter, a mathematical model of the system 
based on differential equations should be created (Auger et al., 2013; Simon, 2006). The Kalman filter estimate the 
state vector tx̂( ) on the basis of the model together with the measurement of the input vector u(t) and the output 
vector y(t).

According to the assumption, the motor model is given by the following equations of state vector:

 d
dt

t t t tx Ax Bu w( ) ( ) ( ) ( )= + +  (18)

 t t ty Cx v( ) ( ) ( ),= +  (19)

where w(t) and v(t) are white noise with zero mean, uncorrelated with covariance matrices (Q and R, respectively) 
(Simon, 2006). The process covariance matrix (i.e. Q), the measurement covariance matrix (i.e. R) and the initial 
values of the estimation error covariance matrix (i.e. P) together with the initial values of the state vector should be 
selected. There are several methods for selecting the matrix value. In the case of correlated noise, the entire matrix 
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will have elements (Simon, 2006). The values in the matrix will depend on measurement noise covariance. If the 
signals are correlated with known variance of the noise, then matrix R is defined as:

 R ,
n n m

n m m

2

2

�

� � �

�

σ σ σ

σ σ σ

=



















 (20)

where sm and sn denote variance of the measurement noise (m and n are positive integer numbers determining size 
of the matrix) and sn sm the covariance of the signals.

The R matrix can be determined on the basis of measurement noise, where the values on the diagonal 
correspond to the variance of the measurement noise. The Q matrix is responsible for the process noise in the 
model and should be selected after determining the matrix R (Dhaouadi et al., 1991).

Next, covariance matrices are selected in this case, uncorrelated measurement. In this case, R matrix is much 
simpler (Aishwarya and Jayanand, 2016; Dhaouadi et al., 1991; Terzic and Jadric, 2001):
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If the model is not given in relative units and the state vectors consist of different sizes (e.g., current, speed, 
position), it is necessary to transfer to relative units in order for the Kalman Filter to work properly and increase 
value that we want to optimise:

 diag
X X X

Q 1  , 1  ,  ,   1 .
max max n max1 2

= …










− − −
 (22)

The process covariance matrix can be also selected based on the following formula (Ryba et al., 2014):

 = ⋅ ′,Q B B  (23)

where: B - input matrix
The measurement covariance matrix can be selected based on the variance of the measurement noise. The 

value of covariance matrix R can be selected based on the measured data or based on the parameters of the sensor. 
Detailed calculation of the standard deviation for the mechanical speed measurement by incremental encoder can 
be calculated as follows (Šlapák et al., 2016):

 σ π
= ⋅

⋅ ⋅








ω N T

1
2

2
4  EN

 (24)

where TEN is the sample time of the encoder and N the number of pulses per revolution.
The Kalman filter was invented to estimate the parameters of the linear model described by the state 

equations. The system representing the BLDC motor was non-linear, so the EKF was used, which was developed 
to observe the parameters of the non-linear model. Substituting the first two parts of the Taylor series to the state 
space model (Aishwarya and Jayanand, 2016; Dhaouadi et al., 1991; Lenine et al., 2007; Simon, 2006; Terzic 
and Jadric, 2001):
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where ∇ is the Jacobian matrix and xo, uo are state and control vector values in specific point. The derivative of non-
linear state space equation is as follows:
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 . The derivative of the angle function has been calculated based on 

Table 1. One of the values of the function is given in Table 3.

Table 3. Derivative of fa(φ)

φ dfa(φ)/ dφ 

ϕ< <0
π
3

0

ϕ< <
π
3

2π
3

–6/π

ϕ< <
2π
3

4π
3

0

ϕ< <
4π
3

5π
3

6/π

ϕ< < π
5π
3

2 0

The initial values of the matrix P with the initial values of the state vector were selected to zero. The algorithm of the 
discrete EKF has been divided into appropriate steps (Simon, 2006):

Step 1: Prediction of the state vector
The state vector at sampling time k + 1 was predicted from the input vector U and the state vector X at previous 
sampling time k by using state space BLDC motor model:

 X F X B U ˆ  k k k k K1 = ++
− +  (27)

 P F P F Q.k k k k
T

1 = ++
− +  (28)

In equations (27) and (28), both Xk
− and Xk

+ are estimates of the same state vector Xk in the sampling time k, Xk
− is 

estimation before the measurement Yk is taken (a priori estimate) and Xk
+ is estimation after the measurement is 

taken (a posteriori estimate). Fk is discrete gradient matrix f(x, u)ˆ , and Bk is discrete input matrix.

Step 2: State and covariance correction based on measurements
The measurement update equations, which try to make correction to the prediction state vector based on 
measurement signals at time k + 1. The equations for Kalman filter become:
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 K P C C P C R  .k k
T

k
T

1 1 1

1( )= ++ +
−

+
− −

 (29)

The state vector update estimation after measurement at time k+1:

 X X K Y CX .k k k k k1 1 1 1 1( )= + −+
+

+
−

+ + +
−  (30)

The covariance matrix after measurement was processed at time k+1:

 IP K C P  .k k k1 1 1( )= −+
+

+ +
−  (31)

The equation was used to implement the filter in the MATLAB Simulink program. EKF with the BLDC motor and 
inverter circuit are shown in Fig. 3.

Fig. 3. Permanent-magnet BLDC motor with EKF – Simulink implementation

The BLDC motor model with the Kalman filter, which was estimated in parallel, was used to carry out simulation 
experiments (Fig. 2). The inverter is powered from a constant voltage source. The shape of Q is 5 × 5, and R is a 
3 × 3 matrix for selected BLDC motor model.

4. Simulation test of covariance matrix
The Kalman filter has covariance matrices that can be used to achieve better estimation results and to improve 
the dynamics of the estimator. Numerous publications omit the topic of covariance matrix selection and most often 
choose an identity matrix. The purpose of this paper was to present methods for selecting the covariance matrices. 
The values of the covariance matrices were chosen in two different ways based on the previous considerations. In 
both cases, the measurement noise was added to measurements:

•   Method 1. Simulation was carried out in which the values of the covariance matrices (Q and R) were changed. 
The purpose of the simulation was to find such values of the covariance matrix to get the best estimate of the 
angle in the steady state. The result of the test was 3D graphs, which present multiplier values of covariance 
matrices and error value (y – yest) in the steady state for loaded motor.

•   Method 2. The process covariance matrix was chosen based on the formula (23), and the measurement 
covariance matrix was set to identity matrix.

A simulation test was carried out to determine the matrix value – method 1. During the test, the values of the Q and 
R matrices were changed by qm and rm covariance matrix multipliers (33) and (34). The multiplier value has been 
changed from 1 · 10–2 to 5 · 10-1 based on measurement variance. Uncorrelated measurement noise was assumed, 
and measurement noise power Np was calculated by:
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 N T  ,p s
2σ= ⋅  (32)

where s 2 is the variance of the noise.
White Gaussian noise power was calculated and set to 1·10–6. Covariance matrix with multiplier is as follows:

 rR  
1 0 0
0 1 0
0 0 1

,m = ⋅
















 (33)

 q diag
X X X X X

Q 1  , 1  , 1  , 1 ,   1 ,m
max max max max max

 
1 2 3 4 5

= ⋅










− − − − −
 (34)

where values are set to = = =− − −X X X 
1

10max max max1 2 3  and =−X 100max4 ; =−X 1
10000max5 .

The estimated speed and angle were recorded to calculate the steady-state error (several recent samples from 
the measurement of angular speed error and rotation angle were averaged). A greater error in the steady-state 
condition than the given values will not be interesting to use in the control system or to make sensorless drive.

Increasing the process noise covariance matrix without increasing the measurement noise covariance matrix will 
result in a large estimation error for angle estimation. Increasing the value on the diagonal of the R matrix will reduce 
the estimation error, which is confirmed in Fig. 4. Figure 5 presents average mechanical speed error in steady state.

Fig. 4. The 3D graph shows the average error in the steady state for the angle value [rad]

Fig. 5. The 3D graph shows the average error in the steady state for the speed value [rad/s]
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A significant value in the process covariance matrix, corresponding to the speed state variable (X4–max), causes an 
increase in the value of the R, which does not reduce the error in the steady state (small impact). The speed is 
more dependent on the model than the measurements. Based on simulation results, matrix values were selected to 
achieve small error value in angle estimation (rm = 0.5, qm = 0.01).

It should be noticed that if measurement covariance matrix is calculated, then only the value of Q remains 
unknown. Using process covariance matrix deviation, we can carry out similar simulation to obtain the desired 
steady-state error.

The estimated speed and angle for both methods with the error signal (y – yest) are presented in Figs. 6 and 7.
The simulation allows to collect a database of parallel test results necessary for assessing both method and 

quantifying the differences between the two methods. The maximum error max y yest( )−  for the first method in the 
steady state is equal to 6.26 rad/s. The second method of selection covariance matrices gives a more precise result 
equal to 6.20 rad/s but variance (3.00) is higher in comparison with the first method (2.87).

Fig. 6. Angular speed comparison and steady-state error for both methods [rad/s]

Fig. 7. Angle comparison and error value for both methods [rad]

The maximum error max y yest( )−  for both methods was close to 2.5 · 10–2 rad but variance of the error in the first 
method was bigger (5.48 · 10–2) than that in the second method (4.15 · 10–2).

The second method is much simpler and gives very good speed estimation results for the BLDC motor. The 
estimated angle value in both cases is sufficiently precise. Sensorless drive for the BLDC motor can be important 
in small motors where the hall sensors enlarge the motor size.
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5. Conclusions
By selecting the Q and R matrices in a simulation way, the most favourable Kalman filter parameter can be 
determined to obtain a small error value in the steady state, but it requires a time-consuming simulation. Selecting 
the matrices by the second method is simpler and guarantees good estimation of speed and angle. It should also be 
remembered that the estimated result can be adjusted by changing the specific value of the covariance matrices and 
initial values of the filter. Filter tuning may also cause a change in overshoot and response time value. Therefore, 
one should consider whether the observer is fast enough and whether the overshoot does not exceed the assumed 
level. It should also be remembered that at the filter design stage, we are limited to determining the dynamics of the 
covariance matrix and it may turn out that the desired dynamics is not possible to achieve. A possible solution to this 
problem is to choose a different motor model, which can be extremely difficult.
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