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Abstract: The article is a summary of previous work on the possibility of using Petri layers in adap-
tive neuro-fuzzy controllers. In the first part of the paper the controller and two types of Petri layer
have been presented, competitive layer which resets certain signals and transition layer which causes
omission of signals. Layer properties were described and comparison has been made. In the second
part of the paper, the results of a simulation showing the advantages and disadvantages of proposed
solutions have been presented. Both quality of reference signal tracking and energetic cost of control
process have been calculated. In the last part, analysis and comments on the results were made. Main
conclusions are that transition Petri layer can significantly reduce growth of numerical cost of the al-
gorithm despite the increase of fuzzy rules count. Also both competitive Petri layer and transition
Petri layer by changing some inner signals can affect output value of the fuzzy system and thus the
control quality indicators change. Most positive solutions have been pointed out.
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1. INTRODUCTION

Many researchers nowadays have focused on improving the quality of regulation
through the development of new control algorithms and modification of existing ones.
Examples include predictive control [12], adaptive control [8], [14] or fuzzy algo-
rithms [10], [11], [13]. Especially the last experience growing interest. Among others,
Petri layers are one of the many currently available modifications of the neuro-fuzzy
controllers [15]–[17]. Not only do they allow the control function of the controller to
be changed, but also its computational cost to be optimized, which is one of the factors
allowing for cheaper implementation of these regulators in industrial systems, or using
them for objects characterized by smaller time constants.
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The purpose of this article is to present the possibilities of implementing Competi-
tive Petri Layer (CPL) and Transition Petri Layer (TPL) in Adaptive Neuro-Fuzzy
Controller (ANFC). The CPL changes output control value of the controller by setting
some of the signals existing in the neuro-fuzzy inference system to zero, whereas TPL
omits some operations in the algorithm instead of performing idle operations such as
adding zero. In terms of mathematical operations both TPL and CPL are identical, of
course as long as signals set to zero by CPL and omitted in algorithm by TPL are the
same.

Despite the seemingly more complicated algorithm – the algorithm needs to deter-
mine which membership functions are to be most active during current iteration – the
number of operations needed to compute output value of the controller with TPL
dumping all but two membership functions for each input, is significantly smaller than
it is in the controller without TPL. This is true especially for controllers with
a large number of rules.

At the same time, the controllers with TPL with triangular membership functions
allow for the same control function as controllers without Petri layer when the num-
ber of signals set to zero is less than or equal to the number of zero values existing
by definition. By the number of zero values existing by definition, the author means
the number of signals having zero value due to the finite support of triangular func-
tion.

The paper is constructed in the following manner. The first part describes the
aforementioned adaptive neuro-fuzzy controller and each of the layers conventionally
found in it [2], [14], as well as all possible CPL implementations considered so far
[3]–[7]. Then in the second part, an analysis of the influence of CPL and TPL proper-
ties on ANFC algorithm was carried out. The analysis consists of assessing the time
needed to compute the algorithm and changes in the quality control indicators of the
system with original and modified controller. Changes in the control function, espe-
cially in the potential of its shaping towards the controlled object translate into the
quality properties of the resulting control system. Reducing the computational cost
allows shorter calculation time of a single iteration to be obtained. Finally, a discus-
sion over individual properties with a commentary about the legitimacy of the use of
particular solutions in various control systems was held.

2. ADAPTIVE NEURO-FUZZY CONTROLLER
WITH PETRI LAYERS

This paper presents the two types of Petri layers possible to implement in the
adaptive neuro-fuzzy controller [2], [14]. These layers are CPL and TPL. A schematic
diagram of the controller with possible Petri layers is presented in Fig. 1.
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Fig. 1. Schematic diagram of the controller with possible Petri layers

For clarity, a two input (in1, in2) neuro-fuzzy controller has been used, the solution
can easily be extended to a larger number if inputs [2]. Input variables can be selected
in accordance with the will of the designer. Neuro-fuzzy inference system consists of
6 basic layers [3], [14], with PL implemented among them. The layers of the controller
can be described as follows.

2.1. INPUT LAYER

The input layer (Lin), according to formula (1) normalizes input signals. The range
of each of the variables is limited to ± 1. Scaling factors (K1,2) cause the possible range
of input values fit the desired limited range of the expected value of the variable

]1],1),max[min[(_  nnoutin inKL , (1)

where n = [e(k), Δ e(k), Σe(k), u(k – 1), x(k), ..., a].

2.2. TRANSITION PETRI LAYER

In the transition layer (TPL), the identification of the range of the input variable,
in which the variable is located in the current iteration of the algorithm, is made. This
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layer allows the appropriate membership functions and rules based on the identified
area of the control plane to be selected. Only weight factors corresponding to the ac-
tive rules are being adapted. This is dictated by the desire to reduce the numerical
complexity of the controller with a large number of rules of the algorithm.

In Fig. 2, an example of control plane and the consequences of TPL application
in neuro-fuzzy system with two input and three triangular membership functions for
each input is shown. Since only two membership functions (for each input) are active,
instead of the four quadrants of control plane, only one needs to be analyzed to obtain
all information. This means that during each calculation step only four (22) out of 9 (32)
rules need to be calculated. Increasing the number of membership functions (for each
input) to the lr, and the number of inputs to lw, results in the need to determine
2lw instead of lrlw rules and adapt the same number of weighting coefficients.
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Fig. 2. Control plane for two input controller
with triangular membership functions with TPL

Triangular membership functions have a finite medium, for any input value,
maximum two adjacent functions only are active in the non-zero level. Application of
TPL will cause omission of the least active functions.

2.3. FUZZYFICATION LAYER

In the fuzzyfication layer (Lfuz) according to formula (2), the membership function
activation level is calculated for the current input values. Undermentioned formula
describes triangular membership function.
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The triangular membership functions used were distributed uniformly over the
variable range. Denotations in the formula: i – the number of input, j – the number of
membership function (for TPL function identified by the layer as one of the most ac-
tive), n – number of inputs (here, 2), m – membership functions corresponding to the
sector identified by the TPL (here, Tr1, Tr2) or the number of membership function
corresponding to the input for the controller without TPL (here, 3).

2.4. PETRI LAYERS

For the controller with three membership functions per each of the two inputs, the
use of either TPL omitting one membership function or CPL k1 setting one signal to
zero makes no difference in terms of output control function. In the case of TPL based
on the identification of a sector corresponding to the current value of input signal only
two membership functions values are determined for each input. Similarly CPL reset-
ting one of the functions makes a two non-zero signals for each input.

As a result, the input matrix for rules layer (Lrules) has the size of 22 for TPL and 32

for CPL. In general, the effect of CPL can be described by the formulas [5]

)}({max_
...1

insortkA
nNk d 

 , (3)

ii
ni
Aout

inout
i





...1

, (4)

0
...1



 i

ni
Ain

out
i

, (5)

where: A – vector of k maximum values of the input vector, max_k – choice opera-
tor of k maximum values from the input vector, sort – sorting operator (descending
in accordance to the absolute value), in – input vector, ini – i-th value of input vector,
outi – i-th value of output vector, Nd – set number of the maximum values that should
remain active, n – count of the input and output vectors.

2.5. RULES LAYER

The rules layer (Lrules) determines the levels of activation of individual rules. Rule
base consists of expressions like [9]

Rn : IF e(k) IS μj1i1(e(k)) AND Δe(k) IS μj2i2(Δe(k)) THEN y = an.

In the work, t-norm prod was used (6)
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where n and m are, as in the fuzzyfication layer, the number of inputs and the number
of membership function for the controller with or without CPL or active membership
function in the case of TPL; while μij = Lfuz_out ij.

2.6. INFERENCE LAYER

In the inference layer (Linf) in accordance with formula (7) firing levels of rules are
calculated. The signals of the firing level is then multiplied with corresponding weight
coefficient
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2.7. DEFUZZYFICATION LAYER

The deffuzyfication layer (Ldfuz) evaluates the output of the fuzzy system. In the
case presented a classical singleton deffuzyfication algorithm was used, the algorithm
is described by the formula [14], [15]:
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2.8. ADAPTATION ALGORITHM

The value of change of weighting coefficients in each iteration is described by the
equation [15]–[17]:
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where em is the reference model tracking error, calculated as difference between refer-
ence model signal, and driving motor speed (em = ωmod – ω1). As reference model an
inertial second order object was used (10), the parameters being chosen as ωr = 30, ξ = 1

)2/()( 222
rrr ssG   . (10)

In each iteration of the algorithm, each of the adapted weighting coefficients is
changed by a value dependent on the current tracking error of the model. Only weight
coefficients corresponding to active rules are adapted proportionally to the level of
corresponding rule activation. It is important to limit the maximum values of the
weighting coefficients and/or to incorporate limit on the controller output, for exam-
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ple, by stopping the process of adaptation. Weight coefficients should be limited in
such a way as to allow the maximum desired output signal value to be reached.
A detailed description of the control structure with reference model was also presented
in [1], [5], [14].

3. OBJECT OF THE STUDY

For the study, a simulation model in Matlab–Simulink has been created. A block
diagram of the model is presented in Fig. 3. The model takes into account the me-
chanical time constants of the electric motors T1 and T2. Mechanical part also includes
viscous and Coulomb friction of the motor (MF1) and load (MF2). The flexible element
was modeled using two of its parameters, the elasticity constant (Kc) and damping
coefficient (D). Both speeds of drive machine (ω1) and load machine (ω2) are being
measured. Input signals for the mechanical part of the system are external load
torque (MO) and torque of the drive (Me), the torque on the flexible shaft is designated
as Ms. The electrical part involves time constant and gain of the electromagnetic
circuit (Kt, Te), constant excitation flux (ψf = const), and the current gauge. The
inverter also was included in the model as inertial block. The inner control loop uses
a classic current PI controller. The outer speed control loop uses the proposed adaptive
neuro-fuzzy controller with various cases of Petri layers.
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Fig. 3. Block diagram of simulation model

4. OUTCOMES

Changes in the control quality criteria depending on implemented Petri layers are
gathered in Table 1. White color indicates a reference value of a given criterion, which
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corresponds to the controller without the PL. Dark gray indicates values worse (higher)
than the value of the criterion for the reference case. Cases of improving the criteria are
given as numerical values with light gray background, the values showing the percentage
reduction of the criterion with respect to the reference case. Results are rounded to the
nearest full percent, where the improvement is less than 0.5% the rounded value is 0.

Table 1. Summary of changes of the control quality criteria for the dual mass system with adaptive
neuro-fuzzy PD controller, with classic singleton deffuzyfication and 3 triangular membership functions

for each input, for different implementation cases of Competitive Petri Layers

The quality criteria used are Integrated Square Error (ISE) and Integrated Absolute
Error (IAE). As values to be assessed eω1 = ωmod – ω1, eω2 = ωmod – ω2, and it_meas were
used. Criteria based on the tracking error of the model by measured speed of the ma-
chine and load tell about the quality of the control, criteria based on the measured
value of armature current help determine the energy cost of the process.

For a broad analysis of the proposed solutions measurements were made for each
of the cases of controller in the system under 6 different trajectories.

The 1st trajectory is the dynamic trajectory of fast step changes of reference speed
with a frequency of 0.25 Hz. The 2nd trajectory is characterized by analogical refer-
ence speed transient but in this case the external load is also periodically turned on and
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off. The 3rd trajectory is the case with constant reference speed, but variable external
load torque. The 4th trajectory is analogous to the 2nd trajectory it consists of
a dynamic periodically switched load and reversing reference speed trajectory, but in
this case, acceleration is performed along the ramp rather than step as in the case of
the first trajectory and the second trajectory. The 5th trajectory consists of sinusoidal
reference speed with frequency of 0.25 Hz. Trajectory 6 like 5 is sinusoidal but with
periodically variable load as in cases 1–3.

Due to the use of the triangular membership function in many cases the output
value is identical to the value of the base controller without PL. In the case of trian-
gular functions maximum two functions for each of the inputs are active simultane-
ously at a non-zero level. Activation levels of other functions are nil. If the number
of signals being reset by CPL is the same or less than the number of signals that are
zero at the moment, the resulting output value is not changed. In layer k2 there are
six signals, and it was decided not to reset more than two of them to ensure that at
least one signal corresponding to each of the inputs will not be zero, which is im-
portant from the point of view of the regulation. As can be seen, the best results are
obtained using layers k1, k3 and k5, almost all of the observed cases showing im-
proved control quality.

The level of improvement of the proposed control quality indicators varies from
less than 1% to 33% for the ISE (ω1) for trajectory 2 and layer k5 that reset 8 signals,
on the other hand, it causes higher values of energy indicators. However, there are
cases, such as k5 layer resetting 5 signals under trajectory 5 where all of the proposed
indicators are lowered (but by less than 1%). The best results in terms of improving
the proposed indicators are obtained in the case of layers k1, k3, and k5.

In Figs. 4–6 the waveforms of selected system with the controller incorporating k1
CPL and the 2nd trajectory transients are presented. From the point of view of the
controller output we can either implement CPL k1 resetting one of the three signals
(Fig. 5) or TPL omitting one signal. In Figs 4–6a, b, c, the motor speed (ω1), the load
speed (ω2) and the model speed (ωmod) are shown. Figures d show the transient re-
sponse of the reference model of tracking error, figures c torsional torque (MS), and
figures f show reference (Itzad) and measured current (Itmeas) of armature. The transient
in figures g shows the difference between the motor speed and load. In figures h, the
waveforms of weight coefficients (Wi) are presented.

Analyzing Figs. 4–6 it can be confirmed that a reset or omission of only one sig-
nal is identical with the absence of any PL. This is also confirmed by the results in
Table 1, and is consistent with theory. The finite carrier of triangular function makes
that maximum two membership functions active at the time. Hence the application of
TPL omitting one out of the three functions in the controller with triangular functions
does not affect the output value and further the quality of control does not change.

Comparing Figs. 4 and 6 it can be seen how PL affects control process. It should
be noted that the reference system (without PL) provides a very good reference model
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Fig. 4. Transients of a system with the controller without Petri Layer

Fig. 5. Transients of a system with a Controller with a k1 competitive Petri layer
resetting one signal/transition layer

Fig. 6. Transients of a system with a Controller with a k1 competitive Petri layer
resetting two signal/transition layer
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tracking quality and the damping of torsional vibration in a dual mass system.
Analyzing model tracking error transients (Fig. 4–6 d) it can be seen that in the case of
CPL k1 which resets two signals (Fig. 6) maximum amplitude is reduced. Also, if the
differences between the machine and load speed, after initial weight coefficient adap-
tation, are smaller, especially at moments of reversion (t = 6, 8 s), it can be stated that
such a system dampens torsional vibrations better.

Figure 7 presents the execution time of 10 series of simulations with a fundamental
step size of 0.0005 s lasting 5 seconds each, that is total of 105 iterations of the algo-
rithm. The calculations were performed for the cases of the two (PD) and three input
(PID) controllers with a different number of membership functions for each of the
inputs. As can be seen, the use of TPL significantly reduces the execution time of the
proposed test series. Higher order controller (PID) with TPL offers shorter calculation
time than the lower order (PD) controller without TPL.

Fig. 7. Execution time of 105 iterations of the algorithm as a function of the number
of membership functions for input

5. SUMMARY

The use of CPL allows the controller output value to be changed, which affects the
control quality. In particular, the layer k3 that resets 6 signals and k5 that resets 6, 7 sig-
nals offer significant reduction of all the speed tracking quality indicators proposed.

CPL parameter k1 = 1 in the case of triangular function provides a control function
identical with TPL and the controller without PL. There is no change in output value
and thus in quality.

The use of TPL can significantly reduce the numerical cost of the algorithm al-
lowing for the implementation on a cheaper processor or in control loop with shorter



P. DERUGO114

execution time, where the calculation time is critical. Even though the algorithm is
more complicated, in the case of controller with 5 or more membership functions per
input usage of TPL omitting 3 out of 5 signals reduces the number of necessary
mathematical operations and time needed to compute the algorithm is shorter (Fig. 7).

It is possible to implement TPL among other layers than between input and fuzzy-
fication layers, however, the gained efficiency of calculation time would be smaller,
yet it would allow the quality of control of the system to be changed.

The use of PL in ANFC allows the quality control indicators to be improved.
Depending on the desired effect, selection of the corresponding layer type and its
parameters should be made. It is not always to improve all quality indicators at a time,
yet it needs to be stated that after implementation of PL the system was not tuned
additionally. The tuning of all controller parameters has been made for the controller
without any PL.

REFERENCES

[1] CHEN Y., TENG CH., A model reference control structure using a fuzzy neural network, Fuzzy Sets
and Systems, 1995, Vol. 73, No. 3, 291–312.

[2] DERUGO P., SZABAT K., Adaptive neuro-fuzzy PID controller for nonlinear drive system, COMPEL:
The International Journal for Computation and Mathematics in Electrical and Electronic Engineer-
ing, 2015, Vol. 34, No. 3, 792–807.

[3] DERUGO P., SZABAT K., A novel implementation algorithm for a fuzzy controller based on the matrix
form of the controller, Przegląd Elektrotechniczny, 2014, Vol. 90, No. 11, 235–238, (in Polish).

[4] DERUGO P., SZABAT K., Implementation of the low computational cost fuzzy PID controller for two-
mass drive system, 16th Int. IEEE Conf. and Exposition Power Electronics and Motion Control
PEMC, 2014, 564–568.

[5] DERUGO P., DYBKOWSKI M., SZABAT K., Analysis of the impact of the position of competitive Petri
layer in neuro-fuzzy adaptive controller on the dynamic properties of the drive system, Przegląd
Elektrotechniczny, 2014, Vol. 90, No. 6, 35–39 (in Polish).

[6] DERUGO P., Analysis of competitive Petri layers impact on fuzzy Mamdani type regulator perform-
ance, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements of the
Wrocław University of Technology. Studies and Research, 2013, Vol. 33, 97–110, (in Polish).

[7] DERUGO P., DYBKOWSKI M., SZABAT K., Application of the adaptive neuro-fuzzy speed controller
with Petri layers to electrical drives, Przegląd Elektrotechniczny, 2013, Vol. 89, 64–67.

[8] JUANG C.F., HSU C.H., Temperature Control by Chip-Implemented Adaptive Recurrent Fuzzy Con-
troller Designed by Evolutionary Algorithm, IEEE Trans. Circuits and Systems, 2005, Vol. 52, No.
11, 2376–2384.

[9] KABZIŃSKI J., KACERKA J., TSK Fuzzy Modeling with Nonlinear Consequences, Artificial Intelli-
gence Applications and Innovations, 2014, 498–507.

[10] KLUSKA J., HAJDUK Z., Digital Implementation of Fuzzy Petri Net Based on Asynchronous Fuzzy RS
Flip-Flop, Proc. 7th Int. Conf., Zakopane, Poland, 2004.

[11] KNYCHAS S., SZABAT K., Adaptive Recurrent Neuro-Fuzzy Control of the Complex Drive System,
EuroCon’2013, Zagreb, Croatia, 2013, 1932–1936.

[12] LU C.-H., TSAI C.-C., Generalized predictive control using recurrent fuzzy neural networks for
industrial processes, Journal of Process Control, 2007, Vol. 17, No. 1, 83–92.



Application of competitive and transition Petri layers... 115

[13] LIN F.J., WAI R.J., LEE C.C., Fuzzy neural network position controller for ultrasonic motor drive
using push-pull DC-DC converter, IEEE Proc. Control Theory and Applications, 1999, Vol. 146,
No. 1, 99–107.

[14] ORŁOWSKA-KOWALSKA T, SZABAT K., Control of the drive system with stiff and elastic couplings using
adaptive neuro-fuzzy approach, IEEE Trans. Industrial Electronics, 2007, Vol. 54, No.1, 228–240.

[15] WAI R., LIU C.H., Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to
Path-Tracking Control of Nonholonomic Mobile Robot, IEEE Trans. Industrial Electronics, 2009,
Vol. 56, No. 7, 2667–2683.

[16] WAI R., LIU C.H., Experimental Verification of Dynamic Petri Recurrent-Fuzzy-Neural-Network
Path Tracking Control for Mobile Robot, Int. Conf. on Control and Automation, 2009, 1359–1364.

[17] WAI R., CHU C.H., Motion Control of Linear Induction Motor via Petri Fuzzy Neural Network,
IEEE Trans. Industrial Electronics, 2007, Vol. 54, No. 1, 281–295.


