Application of Sentinel-2 and EnMAP new satellite data to the mapping of alpine vegetation of the Karkonosze Mountains

Open access

Abstract

Effective assessment of environmental changes requires an update of vegetation maps as it is an indicator of both local and global development. It is therefore important to formulate methods which would ensure constant monitoring. It can be achieved with the use of satellite data which makes the analysis of hard-to-reach areas such as alpine ecosystems easier.

Every year, more new satellite data is available. Its spatial, spectral, time, and radiometric resolution is improving as well. Despite significant achievements in terms of the methodology of image classification, there is still the need to improve it. It results from the changing needs of spatial data users, availability of new kinds of satellite sensors, and development of classification algorithms. The article focuses on the application of Sentinel-2 and hyperspectral EnMAP images to the classification of alpine plants of the Karkonosze (Giant) Mountains according to the: Support Vector Machine (SVM), Random Forest (RF), and Maximum Likelihood (ML) algorithms. The effects of their work is a set of maps of alpine and subalpine vegetation as well as classification error matrices. The achieved results are satisfactory as the overall accuracy of classification with the SVM method has reached 82% for Sentinel-2 data and 83% for EnMAP data, which confirms the applicability of image data to the monitoring of alpine plants.

Ashutosh S., 2012, Monitoring forests: A new paradigm of remote sensing & GIS based change detection. “Journal of Geographic Information Systems” Vol. 4, pp. 470–478.

Bannari A., Morin D., Bonn F., Huete A.R., 1995, A review of vegetation indices. “Remote Sensing Review” Vol. 13, no. 1–2, pp. 95–120.

Beger M., Moreno J., Johannessen J., Levelt P., Hanssen R., 2012, ESA’s Sentinel missions in support of earth system science. “Remote Sensing of Environment” Vol. 120, pp. 84–90.

Billingsley F.C., 1984, Remote sensing for monitoring vegetation: an emphasis on satellites. In: The Role of Terrestrial Vegetation in the Global Carbon Cycle. Edited by G.M. Woodwell. New York: John Wiley and Sons, pp. 161–180.

Bösche N.K., Rogaß C., Mielke C., Kaufmann H., 2014, Hyperspectral digital image analysis and geochemical analysis of a rare earth elements mineralized intrusive complex (Fen carbonatite Complex in Telemark Region, Norway. In: Proceedings of 34th EARSeL Symposium, pp. 4.1–4.6, DOI: 10.12760/03-2014-07.

Braun A., Weinmann M., Keller S., Muller R., Reinartz P., Hinz S., 2015, EnMAP contest: developing and comparing classification approaches for the environmental mapping and analysis programme – dataset and first results. “Remote Sensing and Spatial Information Sciences” Vol. XL-3/W3, pp. 169–175.

Braun-Blanquet J., Chou Y.T., 1947, Carte des groupements végétaux de la France, region nordouest de Montpellier. Station internationale de geobotanique mediterraneenne et alpine, Montpellier.

Buddenbaum H., Rock G., Hill J., Werner W., 2015, Measuring stress reactions of beech seedlings with PRI, fluorescence, temperatures and emissivity from VNIR and thermal field imaging spectroscopy. “European Journal of Remote Sensing” Vol. 48, pp. 263–282.

Buddenbaum H., Stern O., Paschmionka B., Hass E., Gattung T., Stoffels J., Hill J., Werner W., 2015, Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. “International Journal of Remote Sensing” Vol. 36, pp. 4590–4605.

Burai P., Deak B., Valko O., Tomor T., 2016, Classification of Herbaceous vegetation using hyperspectral imagery. “Remote Sensing” Vol. 7, no. 2, pp. 2046–2066.

Campbell J., Wynne R., 2011, Introduction to remote sensing. New York: The Guilford Presss, pp. 317–360.

Congalton R.G., 1991, A review of assessing the accuracy of classifications of remotely sensed data. “Remote Sensing of Environment” Vol. 37, pp. 35–46.

Delegido J., Verrelst J., Alonso L., Moreno J., 2011, Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. “Sensor” Vol. 11, no. 7, pp. 7063–7081.

Dirnböck T., Dullinger S., Gottfried M., Ginzler C., Grabherr G., 2003, Mapping alpine vegetation based on image analysis, topographic variables and Canonical Correspondence Analysis. “Applied Vegetation Science” Vol. 6, no. 1, pp. 85–96.

Dotzler S., Hill J., Buddenbaum H., Stoffels J., 2015, The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. “Remote Sensing” Vol. 7, no. 10, pp. 14227–14258.

Dragozi E., Gitas I.Z., Stavrakoudis D.G., Theocharis J.B., 2014, Burned area mapping using Support Vector Machines and the FuzCoC feature selection method on VHR IKONOS imagery. “Remote Sensing” Vol. 6, no. 12, pp. 12005–12036.

Feng Q., Gong J., Liu J., Li Y., 2015, Flood mapping based on multiple endmember spectral mixture analysis and Random Forest classifier – the case of Yuyao, China. “Remote Sensing“ Vol. 7, pp. 12539−12562.

Gartizia M., Alados C., Perez-Cabello F., Bueno C., 2013, Improving the accuracy of vegetation classifications in mountainous areas. A case study in Spanish Pyrenees. “Mountain Research and Development” Vol. 33, no. 1, pp. 63–74.

Humbolt, A. von, Bonpland A., 1895, Geographie des plantes equinoxiales: tableau physique des Andes et pays voisins. In: Essai sur la géographie des plantes, Paris: Levrault, Schoell et Co.

Immitzer M., Vuolo F., Atzberger C., 2016, First experience with Sentinel-2 Data for crop and tree species classifications in central Europe. “Remote Sensing” Vol. 8, no. 3, pp. 166–193.

Jarocińska A., Zagajewski B., 2008, Korelacje naziemnych i lotniczych teledetekcyjnych wskaźników roślinności dla zlewni Bystrzanki. „Teledetekcja Środowiska” T. 40, pp. 100–125.

Jarocińska A., Zagajewski B., 2009, Remote sensing tools for analyzing state and condition of vegetation. “Annals of Geomatics”, Polish Association for Spatial Information, Vol. 7, no. 2, pp. 47–54.

Jarocińska A., Kacprzyk M., Marcinkowska-Ochtyra A., Ochtyra A., Zagajewski B., Meuleman K., 2016, The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains. “Miscellanea Geographica – Regional Studies on Development” Vol. 20, no. 1, pp. 21–27.

Jensen J.R., 1983, Biophysical remote sensing – review article. “Annals of the Association of American Geographers” Vol. 73, no. 1, pp. 111−132.

Kaufmann H., Forster S., Wulf H., Segl K., Guanter L., Bochow M., Heiden U., Muller A., Heldens W., Scheneidehan T., Leitão P.J., van der Linden S., Hostert P., Hill J., Buddenbaum H., Mauser W., Hank T., Krasemann H., Rottgers R., Oppelt N., Heim B., 2012, EnMAP Technical Report, GFZ Data Services. Potsdam, pp. 1–44.

Khorram S., Nelson S., Koch F., van der Wiele C., 2012, Remote sensing. New York: Springer US, pp. 1−37.

Küchler A., Zonneveld I., 1988, Vegetation mapping. Berlin: Springer.

Kupková L., Cervená L., Suhá R., Jakesová L., Zagajewski B., Brezina S., Alberchtova J., 2017, Classification of tundra in the Karkonose Mountains National Park, using APEX, AISA Dual and Sentinel-2A Data. “European Journal of Remote Sensing” Vol. 50, no. 1, pp. 29–46.

Kycko M., Zagajewski B., Zwijacz-Kozica M., Cierniewski J., Romanowska E., Orłowska K., Ochtyra A., Jarocińska A., 2017, Assessment of hyperspectral remote sensing for analyzing the impact of human trampling on Alpine wards. “Mountain Research and Development” Vol. 37, no. 1, pp. 66–74.

Leitão P., Schwieder M., Suess S., Okujeni A., Galvão L., Linden S., Hostert P., 2015, Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP. “Remote Sensing” Vol. 7, no. 10, pp. 13098–13119.

Locherer M., Hank T., Danner M., Mauser W., 2015, Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-Based inversion of the PROSAIL model. “Remote Sensing” Vol. 7, no. 8, pp. 10321–10346.

Marcinkowska A., Zagajewski B., Ochtyra A., Jarocińska A., Raczko E., Kupková L., Stych P., Meuleman K., 2014, Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines. “Miscellanea Geographica” Vol. 18, no. 2, pp. 23–29.

Marcinkowska-Ochtyra A., Zagajewski B., Ochtyra A., Jarocińska A., Wojtuń B., Rogass C., Mielke C., Lavender S., 2017, Subalpine and alpine vegetation classification based on hyperspectral APEX and simulated EnMAP images. “International Journal of Remote Sensing” Vol. 38, no. 7, pp. 1839–1864.

Martius C.F.P., 1858, Flora brasiliensis. Leipzig: Oldenburg Verlag.

Mielke C., Muedi T., Papenfuß A., Bösche N., Rogaß C., Gauert C., Altenberger U., de Wit M., 2016, Multi- and hyperspectral spaceborne remote sensing of the Aggeneys base metal sulphide mineral deposit sites in the Lower Orange River region, South Africa. “South African Journal of Geology” Vol. 119, no. 1, pp. 63–76.

Nink S., Hill J., Buddenbaum H., Stoffels J., Sachtleber T., Langshausen J., 2015, Assessing the suitability of future multi- and hyperspectral satellite systems for mapping the spatial distribution of Norway spruce timber volume. “Remote Sensing” Vol. 7, pp. 12009–12040.

Ochtyra A., Zagajewski B., Kozłowska A., Marcinkowska-Ochtyra A., Jarocińska A., 2016, Ocena kondycji drzewostanów Tatrzańskiego Parku Narodowego za pomocą metody drzewa decyzyjnego oraz wielospektralnych obrazów satelitarnych Landsat 5 TM. „Sylwan” T. 160, nr 1, pp. 256–264.

Pedrotti F., 1967, Carta fitosociologica della vegetazione de Montelago. Camerino: Instituto di Botanica, Universita di Camerino.

Pesaresi M., Corbane C., Julea A., Florczyk A., Syrris V., Soille P., 2016, Assessment of the added-value of Sentinel-2 for detecting built-up areas. “Remote Sensing” Vol. 8, pp. 299–316.

Quattrochi D.A., Luvall J.C., 1999, Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. “Landscape Ecology” Vol. 14, no. 6, pp. 577–598.

Raczko E., Zagajewski B., 2017, Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. “European Journal of Remote Sensing” Vol. 50, no. 1, pp. 144–154.

Schmid E., 1940, Die Vegetationskartierung der Schweiz im Masstab 1:200,000. Geobotanisches Forschungsinstitut Rübel in Zürich, Bericht für das Jahr 1939, pp. 76−85.

Schouw J.F., 1823, Grundzige einer allgemeinen Pflanzengeographie (mit Atlas). Berlin.

Sendtner O., 1854, Die Vegetationsverhältnisse Südbayerns nach den Grundsätzen der Pflanzengeographie und mit Bezugnahme auf die Landescultur geschildert. München.

Shweider M., Leitão P., Suess S., Senf C., Hostert P., 2014, Estimating fractional shrub cover using simulated EnMAP Data: a comparision of three machine learning tehniques. “Remote Sensing” Vol. 6, no. 4, pp. 3427–3445.

Siegmann B., Jarmer T., Beyer F., Ehlers M., 2015, The potential of pan-sharpened EnMAP data for the assessment of wheat LAI. “Remote Sensing” Vol. 7, no. 10, pp. 12737–12762.

Stoffels, J., Sachtleber, T., Mader, S., Buddenbaum, H., Stern, O., Langshausen, J., Dietz, J., 2015, Satellite-based derivationof high-resolution forest information layers for operational forest management. “Forests“ Vol. 6, pp. 1982–2013.

Stratoulias D., Balzter H., Zlinszky A., Tóth V.R., 2015, Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. “Remote Sensing of Environment” Vol. 157, pp. 72–84.

Suchá R., Jakešová L., Kupková L., Červená L., 2016, Classification of vegetation above the tree line in the Krkonoše Mts. National Park using remote sensing multispectral data. “AUC Geographica” Vol. 51, no. 1, pp. 113–129.

Suess S., van der Linden S., Okujeni A., Leitão P., Shweider M., Hostert P., 2015, Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data. “Remote Sensing” Vol. 7, no. 8, pp. 10668–10688.

Thales Alenia Space, 2016, Sentinel-2 Products specification document (PSD). European Space Agency (ESA), https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Product-Specifications-Document, pp. 41–53 (access 6.01.2017).

Tobler M., Cochard R., Edwards P., 2003, The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania. “Journal of Applied Ecology” Vol. 40, no. 3, pp. 430–444.

Tomczak J., 2013, Wprowadzenie do sztucznej inteligencji, https://www.ii.pwr.edu.pl/~tomczak/PDF/si1.pdf (access 01.09.2017).

Topaloğlu R., Sertel E., Musaoglu N., 2016, Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. “The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences” Vol. XLI-B8, pp. 1055–1059.

Traganos D., Reinartz P., 2017, Mapping Mediterranean seagrasses with Sentinel-2 imagery. “Marine Pollution Bulletin” (article in print).

Vapnik, V.N., 1995, The nature of statistical learning theory. New York: Springer.

Wijaya A., Gloaguen R., 2007, Comparison of multi-source data support vector machine classification for mapping of forest cover. In: Geoscience and Remote Sensing Symposium 2007. IGARSS 2007. IEEE International, pp. 1275–1278.

Wojtuń B., Żołnierz L., 2002, Plan ochrony ekosystemów nieleśnych – inwentaryzacja zbiorowisk. W: Plan Ochrony Karkonoskiego Parku Narodowego. Brzeg: Biuro Urządzania Lasu i Geodezji Leśnej, Oddział w Brzegu, pp. 67 and 2 maps.

Xie Y., Sha Z., Yu M., 2008, Remote sensing imaginery in vegetation mapping: a review. “Journal of Plant Ecology” Vol. 1, no. 1, pp. 9–23.

Yokoya N., Cheung-Wai Chan J., Segl K., 2016, Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. “Remtote Sensing” Vol. 8, no. 3, pp. 172–190.

Zagajewski B., 2010, Ocena przydatności sieci neuronowych i danych hiperspektralnych do klasyfikacji roślinności Tatr Wysokich. „Teledetekcja Środowiska” T. 43, 113 pp.

Zagajewski B., Folbrier A., Kozłowska A., Sobczak M., Wrzesień M., 2005, Zintegrowane pomiary roślinności wysokogórskiej. „Teledetekcja Środowiska” T. 36, pp. 61−68.

Journal Information

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 574 469 21
PDF Downloads 267 222 12