
1. Introduction

The elements of plant cover have been in-
cluded on maps for centuries. However, the 
beginnings of thematic plant mapping date back 
to as late as the 19th century. The pioneers in 
this field were the European researchers such 
as, among others, J.F. Schouw (1823), O. Sendt-
ner (1854), C.F.P. Martius (1858), A. von Hum-
boldt, and A. Bonpland (1895). The boom of 
vegetation mapping took place after the World 
War I. During that period, numerous institu-
tions specialising in this field were established. 
For example, in France – Service de la Carte 
de la Végétation de la France au 1:200 000, in 
Switzerland – Stiftung Geobotanisches For-
schungsinstitut Rübel, in the then Soviet Union 
– Komarov Botanical Institute of the Russian 
Academy of Sciences (A. Küchler, I. Zonneveld 
1988). Moreover, the first vegetation maps were 
created, for instance, the vegetation map of 

Switzerland at the scale of 1:20 000 (E. Schmidt 
1940), the vegetation map of the Montpellier 
region (J. Braun-Blanquet, Y.T. Chou 1947), or 
the fitosociological map of the Montelago ve-
getation (F. Pedrotti 1967). Intuitive and inaccu-
rate marking of the borders between individual 
divisions posed a major limitation to these stu-
dies (T. Dirnböck et al. 2003).

The development of photointerpretation of 
aerial pictures and new remote sensing tools 
increased imaging in order to determine the 
expanse of single divisions have revolutionised 
the field of vegetation mapping. Satellite sen-
sors which record electromagnetic radiation 
at different electromagnetic spectrum bands 
enabled the identification of single plant patches 
(J.R. Jensen 1983, F.C. Billingsey 1984, A. Ban-
nari et al. 1995) and precise marking of the 
borders between individual vegetation commu-
nities on the basis of satellite images. In many 
cases this resulted in the automated creation 

Polish Cartographical Review
Vol. 49, 2017, no. 3, pp. 107–119

DOI: 10.1515/pcr-2017-0011 

MARCJANNA JĘDRYCH, BOGDAN ZAGAJEWSKI, ADRIANA MARCINKOWSKA-OCHTYRA
University of Warsaw, Faculty of Geography and Regional Studies
Department of Geoinformatics, Cartography and Remote Sensing
m.jedrych@student.uw.edu.pl; bogdan@uw.edu.pl; adriana.marcinkowska@uw.edu.pl

Application of Sentinel-2 and EnMAP new satellite data  
to the mapping of alpine vegetation of the Karkonosze Mountains
Abstract. Effective assessment of environmental changes requires an update of vegetation maps as it is 

an indicator of both local and global development. It is therefore important to formulate methods which would 
ensure constant monitoring. It can be achieved with the use of satellite data which makes the analysis of hard-
-to-reach areas such as alpine ecosystems easier.

Every year, more new satellite data is available. Its spatial, spectral, time, and radiometric resolution is 
improving as well. Despite significant achievements in terms of the methodology of image classification, there 
is still the need to improve it. It results from the changing needs of spatial data users, availability of new kinds 
of satellite sensors, and development of classification algorithms. The article focuses on the application of 
Sentinel-2 and hyperspectral EnMAP images to the classification of alpine plants of the Karkonosze (Giant) 
Mountains according to the: Support Vector Machine (SVM), Random Forest (RF), and Maximum Likelihood 
(ML) algorithms. The effects of their work is a set of maps of alpine and subalpine vegetation as well as clas-
sification error matrices. The achieved results are satisfactory as the overall accuracy of classification with the 
SVM method has reached 82% for Sentinel-2 data and 83% for EnMAP data, which confirms the applicability 
of image data to the monitoring of alpine plants.

Keywords: Sentinel-2, EnMAP, classification, alpine vegetation, satellite systems

mailto:m.jedrych@student.uw.edu.pl
mailto:bogdan@uw.edu.pl


108 Marcjanna Jędrych, Bogdan Zagajewski, Adriana Marcinkowska-Ochtyra

of maps. The remote sensing allowed for the 
monitoring of vegetation with regional or conti-
nental coverage (D.A. Quattrochi, J.C. Luvall 
1999; A. Jarocińska, B. Zagajewski 2009; B. Za-
gajewski 2010; S. Autosh 2012; M. Kycko et al. 
2017; A. Marcinkowska-Ochtyra et al. 2017). 
What is more, the increase in popularity of sa-
tellite data stems, among other things, from 
the fact that it is up-to-date, consistent and re-
current. Such data also makes it possible to 
conduct the analysis in large areas. Since 1972, 
the most commonly used environmental data 
has been received from Landsat satellites. 
However, the spatial and spectral resolution of 
its equipment (MSS in the case of ERTS/Land-
sat 1, 2, and 3, TM – Landsat 4 and 5, ETM+ 
– Landsat 7 and OLI – Landsat 8) was not suf-
ficient to make thorough analysis, including the 
mapping of heterogeneous vegetation – the 
category which alpine plants belong to. Since the 
mid-nineties, researchers have greatly focused 
on the improvement of spatial, time and spectral 
resolution in the field of satellite remote sensing 
– increase in the number of spectral bands with 
simultaneous narrowing of their bandwidth. 
The current maximum spatial resolution of civil 
remote sensing data is 30 cm (panchromatic 
WorldView-3 and WorldView-4 optical satelli-
tes), whereas the shortest recurrence time of 
data recording in Poland is about few days 
(COSMOSky-Med radar satellite). Such good 
sensor parameters are considered the most 
significant when conducting precise analysis, 
for example, detection of vegetation stress. 
Unfortunately, the data is not available free of 
charge, which greatly limits its applicability.

The changes introduced in this area seem to 
be the result of the actions taken by the Euro-
pean Space Agency (ESA) within the Coperni-
cus programme, the aim of which is to build the 
system of environmental monitoring through 
the strengthening of Europe’s potential in terms 
of sensor and satellite construction as well as 
provide European recipients with data for its 
practical use (M. Berger et al. 2012). As part of 
the mission, the attempts to put devices exa-
mining vegetation in orbit have already been 
made. The Proba V mission, which is the con-
tinuation of the SPOT-VÉGÉTATION project 
carried out in the years 1998–2014, provides 
everyday data that can be used for vegetation 

and environmental monitoring (it is used to 
determine indicators such as NDVI and fAPAR). 
The FLEX (Fluorescence Explorer) satellite is 
going to be put in orbit in 2022. Its FLORIS 
device will take fluorescence measurements, 
which will make it possible to control the circu-
lation of carbon dioxide between plants and 
the environment. The proper application of this 
data will necessitate the formulation of suitable 
methods of its processing. The effect of the 
recent work conducted by the European Space 
Agency and European Union is also the Senti-
nel-2 satellite mission under the Sentinel project 
which is a part of the Copernicus programme. 
The aim of the Sentinel mission is to build 
a modern system to monitor the world with a glo-
bal scope. It will be possible thanks to 10 satel-
lites that are going to be put in orbit. They will 
operate in five separate systems, each of which 
will consist of two satellites moving synchro-
nously each of which will deliver different kinds 
of data. 

The German EnMAP (Environmental Mapp
ing and Analysis Programme) mission may 
bring a new quality to environmental research. 
The EnMAP satellite, which is planned to be 
launched in 2018, will provide cost-free hyper-
spectral data. Its spatial resolution is in fact 
only 30 m but it will record the radiation in 242 
narrow bands and 2 bandwidths: 420–1000 nm 
(88 bands) and 900–2450 nm (154 bands), 
which is a groundbreaking solution with features 
comparable to the parameters of devices for 
aerial recording (H. Kaufmann et al. 2012). 
Technical details of the EnMAP sensor are 
presented in table 1.

Currently, simulated images based on the 
set of input data – other multispectral and hy-
perspectral images – can be received. The si-

Table 1. Technical parameters of EnMAP sensor

Spectral  
parameters VNIR SWIR

Spectral range 420−1000 nm 900−2450 nm

Numer of bands 88 154

Spatial parameters
Spatial resolution 
(at the nadir point) 30 m

Time parameters
Revisit time 23 days
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mulation is done with the use of the EnMAP 
end-to-end Simulation Tool (EeteS).

Due to the on-line availability of Sentinel-2 
and planned release of EnMAP satellite images, 
it is proper to formulate optimum methods for 
its processing and mapping of alpine vegeta-
tion, with strong focus on the selection of a clas-
sifying algorithm. This would allow for precise 
mapping of vegetation divisions and help to 
monitor the natural environment.

Alpine vegetation communities belong to unique 
ecosystems which are a significant component 
of the environment as well as a key indicator of 
the occurring changes since numerous species, 
often endemic, can be found in a small area. The 
field research of alpine vegetation is relatively 
difficult mainly due to a short growing season, 
its high changeability, significant delevelling and 
difficulties with exploration of the terrain. It is 
therefore recommended to apply the data and 
remote sensing techniques to mapping and re-
searching alpine ecosystems (B. Zagajewski et 
al. 2005, A. Marcinkowska et al. 2014, A.M. Ja-
rocińska et al. 2016, A. Ochtyra et al. 2016). 

The information delivered by the Sentinel-2 
system is particularly valuable for vegetation 
mapping. The system comprises two satellites: 
Sentinel-2A, launched on 23 June 2015, and 
Sentinel-2B, put in orbit on 7 March 2017). 
They are equipped with Multi-Spectral Instru-
ment (MSI) with 13 spectral bands and band
widths ranging from 443 to 2190 nm (4 of them 
with a narrower spectral range) and resolution 
between 10 and 60 m (Thales Alenia Space 
2016). The data received from this device is 
exceptionally valuable in order to conduct the 
vegetation analysis as the values of reflected 
radiation within the recorded range make it pos
sible to assess its condition (J. Delegido et al. 
2011). Selected parameters of the Sentinel-2 
sensor are presented in table 2.

Due to its specificity, Sentinel-2 data has 
already been successfully applied to the classifi-
cation and analysis of the land cover (H. Topaloğlu 
et al. 2016) and aquatic plants (D. Stratoulius et 
al. 2015), crop and forest tree species (M. Im-
mitzer et al. 2016), and finally alpine vegetation 
(L. Kupková et al. 2017). 

So far, simulated EnMAP data has been tested 
by researchers who specialise in the identifica-
tion of minerals (N. Yokoya et al. 2016, C. Mielke 
et al. 2016, N.K. Bösche et al. 2014) and vege-
tation. As far as the latter is concerned, the 
major focus was on the detection of water stress 
in forests and coastal vegetation (S. Nink et al. 
2015, J. Stoffles et al. 2015, S. Doltzer et al. 
2015), measurement of plant indicators (M. Lo
cherer et al. 2015, B. Siegamnn et al. 2015), 
monitoring of vegetation (P. Leitão et al. 2015), 
and vegetation mapping (A. Marcinkowska-
-Ochtyra et al. 2017, A. Braun et al. 2015, S. Nink 
et al. 2015, S. Suess et al. 2015). EnMAP Box 
software, specifically dedicated to EnMAP data, 
turned out to be particularly useful for doing 
the analysis. It contains a number of built-in 
modules which enable quick and precise ana
lysis. Special classification modules are useful 
for the classification of vegetation (imageSVM 
– Support Vector Machine for Classification 
and Regression, imager – Random Forest for 
Classification and Regression, imagePLSR – 
Partial Least Square Regression).

Most classification which has been done so 
far both with the use of Sentinel-2 data and 
simulated EnMAP data was based on mappers 
which belong to the group of algorithms repre-
senting machine learning – the field that has 
been dynamically developing recently – applying 
the methods of so-called Support Vector Machine 
(SVM) or Random Forest (RF). The develop-
ment in machine learning results primarily from 
the growth in the number of variables which 

Table 2. Key parameters of Sentinel-2 sensor

Spatial resolution Spectral resolution

10 m 490 nm (blue) 560 nm (green) 665 nm (red) 842 nm (NIR)

20 m Red-Edge SWIR

705 nm 740 nm 783 nm 865 nm 1610 nm 2190 nm

60 m 443 nm 945 nm 1375 nm

Revisit time 10 days (5 days for whole system)



110 Marcjanna Jędrych, Bogdan Zagajewski, Adriana Marcinkowska-Ochtyra

are used for classification and the volume of 
this data (M. Pesaresi et al. 2016). In such 
conditions, highly good results started to emerge 
with the application of a machine learning 
algorithm that is considered artificial intelligence 
(J. Tomczak 2013).

The Support Vector Machine algorithm, de-
scribed by V. Vapnik (1995), is an active learning 
method which is used to divide classified pixels 
by a mathematical function. If such an opera-
tion cannot be performed in a two-dimensional 
space, classified pixels are transferred to spaces 
with a larger number of dimensions in which 
they can be divided. This is the actual advan-
tage of this method. It enables effective classi-
fication of heterogeneous pixels in terms of 
spectral reflectance (so-called mixels), which 
contain some smaller objects belonging to dif-
ferent classes. This often occurs in a situation 
when classification is made on the basis of data 
with a large size of a pixel such as Sentinel-2 
and EnMAP images. The SVM method has 
therefore been often applied by scientists con-
ducting their research based on this data with 
positive results. High overall accuracy, which 
is one of the basic measures used to assess 
the classification reliability that is defined as 
quotient of correctly classified pixels to all pixels 
in the error matrix (B. Zagajewski 2010), has 
been obtained by many researchers. A team 
led by H. Topaloğlu (H. Topaloğlu et al. 2016), 
which used Sentinel-2 data, classified the land 
cover in Turkey with the overall accuracy at the 
level of 82%. D. Stratoulias and others (2015) 
also assessed (by visual assessment) their 
classification of aquatic vegetation of Balaton 
correctly using the SVM method. S. Suess and 
others (2015), who made their classification on 
the basis of EnMAP data concerning shrub 
vegetation in Portugal, obtained the overall 
accuracy of 81%, whereas A. Braun and others 
(2015) classified the land cover in Bavaria, 
using the SVM method, with the overall accu-
racy of 85%.

The Random Forest method applies the 
technique of selecting k observation vectors 
from an n-element sample which is used to 
construct a decision tree. A given number of m 
elements (where k>m) are selected from every 
tree node. Then, out of this group, n vectors 
(where m>n) are selected from another node. 
The selection continues until the node contains 

elements belonging to the same class. The 
elements (such as pixels) are classified to the 
class in which they are most common in all con-
structed trees. The Random Forest method 
was successfully applied to the vegetation mapp
ing based on both multispectral (M. Gartzia et 
al. 2013) and hyperspectral (mainly aerial) da-
ta (P. Burai et al. 2016). The RF algorithm, consi-
dered relatively more universal than SVM, that 
is, not requiring long parametrisation (Q. Feng 
et al. 2015), was also applied to the research 
on Sentinel-2 and EnMAP data. M. Immitzer 
and others (2016), using the RF algorithm and 
achieving high overall accuracy, made the clas-
sification of crop species (OA – 72%) and trees 
(OA – 76%), which is comparable to the overall 
accuracy of 74% achieved by A. Braun and 
others (2015) in their classification of land cover. 

An algorithm which is not included in the ca-
tegory of machine learning is the Maximum 
Likelihood method (ML). This algorithm has 
often been used for the classification of multi-
spectral data to calculate the likelihood of a pixel 
to belong to a given class with the standard 
distribution of data, taking variations of spec-
tral reflectance in each class also into account. 
It requires that sufficient amount of training 
data is entered (it must exceed the number of 
imaging channels), which may turn out to be 
problematic when it comes to classifying hyper-
spectral data. The algorithm is well applicable 
to data with standard distribution. What is more, 
it is relatively fast and available in most pro-
grammes for the analysis of raster (ENVI, Saga 
GIS) and vector data such as ArcGIS (J.B. Camp-
bell, R.H. Wynne 2011). Researches, using this 
method, achieved satisfactory results in their 
study of vegetation, including alpine plants, which 
was based on multispectral data (M. Tobler et al. 
2003, M. Gartzia et al. 2013, A. Ochtyra et al. 
2016, R. Suchá et al. 2016). Classification based 
on the ML algorithm has also been applied to 
Sentinel-2 data. This method was used, among 
others, by H. Topaloğlu and others (2016), who 
achieved the overall accuracy of the land cover 
classification at the level of 76%, as well as 
D. Traganos and P. Reinartz (2017) who clas-
sified aquatic vegetation. EnMAP data has not 
been classified with the ML method yet, which 
means that spectral space needs to be suffi-
ciently reduced. 
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2. Area and subject of research

Area of research which covers the range of 
the Karkonosze Mountains in the Sudetes 
Mountains that stretches right in the NW–SE 
direction along the Polish-Czech border with 
the highest peak Śnieżka (1602 m a.s.l., fig.1). 
This mountain range is unique in terms of its 

geological structure which is characterised 
with the occurrence of plutonic igneous rocks 
and metamorphic ones as well as landform 
with some postglacial formations. The Karko-
nosze Mountains are also exceptional in terms 
of their vegetation layers. Areas below 1250 m 
a.s.l. are mostly covered with forests of lower and 
upper montane belt, mainly spruce and beech 
with fir (Sudeten beech). Above this level, up to 
approximately 1450 m a.s.l., there is subalpine 
vegetation dominated by dwarf-pine stands. 
Calamagrostis villosa grasslands, swards with 
Nardus stricta as a dominating species, alpine 
swards and heathlands are also quite common 
there. Swamp and mire vegetation appears in 
the areas rich in water. The upper layers of the 
Karkonosze Mountains are covered by alpine 
plants (the boundary is agreed to be at 1450 m 

a.s.l.). They comprise primarily of species which 
are resistant to atmospheric conditions – rock 
and scree vegetation (mainly different lichens 
species). 

Taking into consideration great environmen-
tal diversity of the Karkonosze Mountains, the 
decision was made to establish the Karkonosze 
National Park (Karkonoski Park Narodowy/

Krkonošský Národní Park) and the UNESCO 
Karkonosze/Krkonoše Biosphere Reserve in 
their territory in both Poland and the Czech 
Republic.

3. Research methods

The classification of alpine vegetation and 
assessment of its accuracy have been made 
for seven vegetation classes, according to the 
model presented in figure 2. 

The first phase of work was aimed at acquiring 
Sentinel-2 and EnMAP input data. They were 
generated with End-to-End Simulation on the 
basis of data received from the APEX aerial 
sensor (on 10 September 2012) in the GFZ 
German Research Centre for Geosciences in 
Potsdam. The result was atmospherically and 

Fig. 1. The study area
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geometrically corrected EnMAP and Senti-
nel-2 images.

The operations were thereafter undertaken, 
independently of each other, to prepare the data 
for classification and collect source materials. 
The preparation of data for classification, due 
to the fact that the data had been previously 
corrected both atmospherically and geometri-
cally, was done by means of reducing super-
fluous bands and creating a mask of shadows 
and background characteristic for diversified 
terrain. The outcome of that phase of work were 
three sets of data for classification, including 
both EnMAP and Sentinel-2 image, which were 
to be further classified and analysed separately. 
The first set included an EnMAP image that 
consisted of 190 bands and a Sentinel-2 image 
with 12 bands. The second one consisted of 
Sentinel-2 data with 12 bands, whereas EnMAP 

data was spectrally adjusted to the Sentinel-2 
resolution. The third one included the data 
which was obtained as a result of the Principal 
Component Analysis (PCA) – five principal 
components (PCA bands) with the highest in-
formativeness were chosen for EnMAP data, 
whereas for Sentinel-2 data – six principal 
components. 

Source data was obtained through the ac-
cess to the vector version of Mapa roślinności 
nieleśnej Karkonoskiego Parku Narodowego 
(Map of non-forest vegetation of the Karkonosze 
National Park; B. Wojtuń, L. Żołnierz 2002) 
and maps from geoportals of the Polish and 
Czech national parks. The team of experts 
from the University of Warsaw also conducted 
field observations in order to identify traverses 
representing separate communities on their 
itinerary with GPS. The results of the identifi-

Fig. 2. Classification procedures scheme
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cation were saved as a shapefile. All the data 
was then analysed in order to distinguish train-
ing and verification traverses. 

The next phase was the classification of ve-
getation. First, independent training and verifi-
cation traverses were designated using the 
ENVI 5.3 software based on the collected test
ing data. The result was 1060 training patches 
and 931 verification ones for EnMAP data and 
1593 training polygons and 1440 verification 
ones for Sentinel-2 data. Second, the training 
polygons served to classify seven types of ve-
getation in the EnMAP Box software applying 
SVM and RF algorithms and in the ENVI 5.3 
using the ML algorithm. The next step was the 
verification of the classification results based 
on the established verification traverses. The 
assessment of accuracy and applicability of 
the classifications for vegetation mapping was 

made on the basis of the generated error ma-
trices and visualisation of the classification in 
the ENVI 5.3 software. 

The final phase was drawing the maps of the 
alpine and subalpine vegetation of the Karkono-
sze Mountains in the ArcMap 10.3 software.

4. Results

The best results of all the six classifications 
made on Sentinel-2 data and eight classifica-
tions based on EnMAP data, in terms of overall 
accuracy and accuracy for individual classes 
as well as in visual terms, were achieved with 
the use of the SVM mapper (fig. 3, tables 3 
and 4). For Sentinel-2 data, the highest overall 
accuracy (OA) was obtained for the set of 
data consisting of six bands as a result of PCA 

Table 3. Error matrix for Sentinel-2 classification using SVM (overall accuracy 78,33%)

Class
Correctly classified pixels (%)

1 2 3 4 5 6 7 8

1. Subalpine dwarf pine scrubs 90 2 0 10 1 2 0 5

2. Heathlands 1 54 2 7 23 5 2 1

3. Grasslands 0 18 79 3 20 5 0 0

4. Bogs, fens and springs 3 6 10 73 8 5 0 0

5. Subalpine tall-forbs 1 18 7 6 41 9 0 0

6. Areas without vegetation 0 3 3 0 6 64 6 0

7. Rock and scree vegetation 0 0 1 1 1 11 91 1

8. Forests 5 0 0 0 0 0 0 91

Table 4. Error matrix for EnMAP classification using SVM (overall accuracy 82,92%)

Class
Correctly classified pixels (%)

1 2 3 4 5 6 7 8

1.  Subalpine dwarf pine scrubs 81 0 0 0 4 4 11 0

2.  Heathlands 0 68 0 8 13 0 4 7

3.  Grasslands 0 0 96 0 0 0 0 4

4. Bogs, fens and springs 0 2 0 90 2 0 6 0

5. Subalpine tall-forbs 0 4 1 6 69 1 19 0

6. Areas without  vegetation 0 0 0 4 0 96 0 0

7.  Rock and scree vegetation 6 7 0 5 11 0 71 0

8. Forests 0 13 3 1 0 1 1 80
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(OA – 82%), yet worse for the total set of bands 
(OA – 78%). In the case of EnMAP data, the best 
overall classification accuracy was obtained 
for the whole set of 190 bands (OA – 83%). 
Significantly lower overall accuracy was ob-
tained, however, for the set of EnMAP data 
which was spectrally reduced to five principal 
components (OA – 60%). In visual terms, the 
SVM classifications with the highest accuracy 
results were very favourable and showed only 
slight differences from the model map by B. Woj-
tuń i L. Żołnierz (2002). It should be noted that 
the classification results were also satisfactory 
with respect to the areas with complex topo
graphy where the occurrence of vegetation is 
mosaic.

Satisfactory classification results were achieved 
with the use of the ML mapper. For complete 
Sentinel-2 data (12 bands), the overall accuracy 
was at the level of 81%, whereas for spectrally 
reduced data (6 PCA bands) – 79%. For EnMAP 
data, the overall accuracy obtained for the data 
spectrally reduced and adjusted to Sentinel-2 
data (12 bands) equalled 75%. However, lower 
accuracy was obtained for five EnMAP bands 
as a result of PCA – 63%. In visual terms, the 
classification was equally satisfactory, yet some 
of the classes were overestimated at the cost 
of others (mainly heathlands at the cost of 
grasslands).

The results of the Sentinel-2 data classifica-
tion based on RF method were characterised 
by high overall accuracy (OA for the complete 
set of bands – 81.9%), however, the visualisa-
tion of the classification is incorrect. There is 
also the salt-and-pepper effect which ought to 
be corrected. The results of the classification 
made on EnMAP data were not satisfactory 
either – the highest overall accuracy (for five 
EnMAP bands after PCA transformation) was 
58.7%. Its visualisation is also insufficient. The 
areas covered with mosaic vegetation are in-
correctly classified and there are classification 
mistakes in the areas dominated by one homo
genous type of vegetation (dwarf-pine stands 
are classified as forests).

As far as the accuracy at the level of classes 
is concerned, two measures were applied: 
producer’s accuracy, which is the ratio of the 
number of correctly classified pixels to total 
number of verification pixels, and user’s accu-
racy that shows the ratio of the number of cor-
rectly classified pixels to the number of training 

pixels (R.G. Congalton 1991). The best classi-
fication results for Sentinel-2 data (complete 
data set – 12 bands) were the following: rock 
and scree vegetation (producer’s accuracy: 
SVM – 92%, ML – 95%, RF – 99%, user’s ac-
curacy: SVM – 87%, ML – 99%, RF – 99%) 
and dwarf-pine stands and forests. The worst 
results in terms of both producer’s and user’s 
accuracy characterised the grasslands class 
(producer’s accuracy: SVM – 41%, ML – 38%, 
RF – 52%; user’s accuracy: SVM – 54%, ML 
– 45%, RF – 64%).

The results concerning EnMAP data were 
relatively comparable to the ones obtained for 
Sentinel-2 data. The best classified species were 
rock and scree vegetation (producer’s accuracy: 
SVM – 95%, ML – 38%, RF – 96%; user’s 
accuracy: SVM – 86%, ML – 45%, RF – 95%) 
and forests; classification results for dwarf-pine 
stands were slightly worse than in the case of 
Sentinel-2 data. The worst results, as in the 
case of Sentinel-2 data, were obtained for the 
grasslands class (producer’s accuracy: SVM 
– 71%, ML – 32%, RF – 28%; user’s accuracy: 
SVM – 68%, ML – 35%, RF – 41%).

5. Discussion

The analysis of the achieved results implies 
that EnMAP and Sentinel-2 data can be appli-
cable to the classification of plants based on 
adequate classification algorithms, including 
SVM and ML (for spectrally reduced multi-
spectral and hyperspectral data). The results 
of the classification with these methods should 
be considered good (overall accuracy for most 
classifications >70%) and may be used to 
draw reliable alpine vegetation maps. It is con-
firmed with other studies which used comparable 
data and classification algorithms and pro-
duced similar results to those achieved by the 
authors. The team of A. Marcinkowska-Ochtyra 
(2017) classified the alpine vegetation of the 
Karkonosze mountains based on EnMAP data, 
using the SVM method, and achieved the clas-
sification OA at the level of 78%, whereas the 
team of L. Kupková (2017), working on Senti-
nel-2 data, achieved 78% for the ML algorithm 
and 71% for the SVM one.

The SVM mapper can be effectively applied 
to the classification of pixels that are not spec-
trally clean (E. Raczko, B. Zagajewski 2017), 
which is relatively common when classifying 
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alpine vegetation and may eventually lead to 
obtaining very good overall accuracy results of 
the classification made with this method. The 
large size of a pixel of the Sentinel-2 and EnMAP 
sensor should also be taken into account as it 
may contribute to the appearance of numerous 
mixels. 

The ML classification results may be con-
sidered good. Comparable results with the ap-
plication of the same method were also obtained 
by other researchers (R. Suchá et al. 2016 – 
OA 78%, M. Gartzia et al. 2013 – Kappa index 
0.9). The ML classification on hyperspectral 
data usually requires that its spectral space is 
reduced (the number of traverses should be 
greater by one than the number of bands), 
which may sometimes produce negative results 
(ML classification OA based on five PCA prin-
cipal components for EnMAP data – 63%).

Nevertheless, the results of all classifications 
made with the RF method should be assessed 
negatively. Despite their high overall accuracy 
for Sentinel-2 data, they were incorrect. 

Another important aspect which is worth noting 
is a possibility of reducing spectral space in 
order to accelerate the classification process 
and limit the volume of data. Such reduction 
allows for the classification of EnMAP hyper-
spectral data with the ML algorithm. The effects 
of the PCA transformation in the case of the 
Sentinel-2 data classification were satisfactory 
– there was increase in overall accuracy for 
the SVM method by 4%, whereas, in the case 
of other classifications there was slight fall by 
approximately 2%. For EnMAP data in the SVM 
and ML classifications, the fall in overall accu-
racy together with the reduction of spectral space 
after PCA transformation was clearly visible 
(for the SVM classification – 18%, ML – 9%), 
which could have been connected with the 
selection of too few principal components 
which were obtained as a result of PCA trans-
formation.

As far as the classification results for specific 
vegetation types are concerned, it should be 
noted that spatial resolution of Sentinel-2 and 
EnMAP data is not sufficient to map divisions 
with relatively small area or large heterogeneity. 
This may be confirmed with very low both pro-
ducer’s and user’s accuracy for the grasslands 
class which, in most conducted classifications, 
did not exceed 50% on Sentinel-2 data and 
40% on EnMAP data. Only the results of the 

SVM classification on complete EnMAP data 
(190 bands) were satisfactory in terms of pro-
ducer’s and user’s accuracy for grasslands 
(71% and 68%, respectively). This type of vege-
tation is often distributed mosaically or occurs 
in patches. The major grasslands species – 
Calamagrostis villosa – can also be found in 
heathlands. Other researchers have also en-
countered problems with proper mapping of 
this type of vegetation species (L. Kupková et 
al. 2017, R. Suchá et al. 2016). Better results for 
this class were achieved by A. Marcinkowska-
-Ochtyra and others (2017) – producer’s accu-
racy for grasslands reached the level of 79%, 
yet the study resulted in low accuracy for heath-
lands (PA – 44%).

Moreover, it appears problematic to identify 
representative pixels for some of the classes if 
a pixel is relatively large, which makes it neces-
sary to generalise classifications to just a few 
divisions. It was highlighted in the research by 
L. Kupková and others (2017), A. Marcinkowska-
-Ochtyra and others (2017), and S. Suchá and 
others (2016). Those teams reduced the num-
ber of divisions in comparison to similar classi-
fications based on higher spatial resolution 
data. Too low spatial resolution of Sentinel-2 
and EnMAP data also poses a problem with 
respect to the mapping of other vegetation 
types based on Sentinel-2 data, such as 
aquatic (D. Stratoulias et al. 2015), forest and 
land cover vegetation (M. Immitzer et al. 2016), 
as well as shrub vegetation – based on the 
EnMAP data (S. Suess et al. 2015).

6. Summary and conclusions

The conducted analyses show the applicability 
of Sentinel-2 and EnMAP data to preliminary 
identification of alpine vegetation based on the 
classification that may be further used as fra-
mework for drawing alpine vegetation maps. 
The achieved results confirm the reliability of 
classifications based on the SVM and ML 
methods. This particularly applies to overall ac-
curacy which, in most of the cases, exceeded 
70%. This is actually very good news for re-
searchers, especially that both Sentinel-2 and 
EnMAP data is available free of charge.

In order to achieve positive results of alpine 
vegetation classification based on Sentinel-2 
and EnMAP data, divisions must be subject to 
generalisation as the spatial resolution of sen-
sors (Sentinel-2–10 m; EnMAP – 30 m) is in-
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sufficient to do the effective mapping of small 
heterogeneous classes. This is confirmed, 
among other things, by the results of grass
lands and heathlands classification for which 
the smallest number of pixels in both training 
and verification traverses was specified. These 
vegetation classes were the most problematic 
in terms of classification. Producer’s and user’s 
accuracy for these classes was below 50%.

The choice of an adequate classification 
algorithm seems essential in order to conduct 
correct classification. The difference between 
the highest and lowest overall accuracy value 
for EnMAP data was 25%, whereas it was lower 
for Sentinel-2 data. This study has revealed 
that the support vectors method – an algorithm 
belonging to the group of Machine Learning 
algorithms – is the most useful for the classifi-
cation of alpine vegetation. A different algorithm 
from this group, namely the Random Forest 
method has turned out to be inapplicable. Re-
latively good results have been achieved for 
the data classified with the Maximum Likelihood 

method. It should be noted, however, that the 
classification based on the ML method requires 
the reduction of the spectral space for hyper-
spectral data, which means that more work 
and time may be needed.

Future research should focus on the possibi-
lities of integrating EnMAP data with data of 
higher spatial resolution, such as Sentinel-2, 
since 242 bands of the German sensor are 
capable of distinguishing the nuances in the 
spectral reflectance curve, which allows for 
precise mapping of vegetation. Such research 
was successfully conducted in order to identify 
minerals (N. Yokoya et al. 2016).

Future tests should also relate to the question 
of reducing spectral space of EnMAP data in 
order to streamline the research process with 
the smallest possible loss in the information 
capacity. The effectiveness of different methods 
of reducing spectral space, such as Minimum 
Noise Fraction (MNF), and different combina-
tions of principal components that are eventually 
identified should also be studied closely. 
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