
1. Polyhedrons in cartography

Polyhedrons have been used in various disci-
plines of science, technology and art for centu-
ries. Scientists and artists have been passionate 
about them. Widely known and much appre-
ciated works of Albrecht Dürer (1471–1528) 
and Leonardo da Vinci (1452–1519) present 
drawings of polyhedrons in various contexts 
and different symbolism (figs. 1, 2). These works 
fascinates and give room for interpretations 
until today.

In cartography, polyhedrons are used for 
many various elaborations connected with 
modeling, spatial analyses and spatial data vi-
sualization. In cartographic projections mainly 
convex polyhedrons are used, among others 
regular polyhedrons (so called Platonic), semi-
-regular polyhedrons (so called Archimedean) 
and Catalans polyhedrons, which are dual for 
them.

Plato (427–347 BCE) was the first to describe 
five regular polyhedrons (fig. 3). In the Timaeus 
dialogue (350 BCE) he discussed how from 
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Fig. 1. Albrecht Dűrer’s Melancholy  
(source: Wikimedia)
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two kinds of triangles four polyhedrons can be 
created (A. Heinz 2008). He assigned them to 
four elements: cube to the Earth (as the least 

movable, or most difficult to move), tetrahedron 
to fire (as the most “agile”, having “sharpest cut 
edges and sharpest tongues in each direction”), 
octahedron to air and icosahedrons to water 

(F. Copleston 1998). When his student Teaitet 
(approx. 140–368 BCE) discovered a fifth re-
gular solid – dodecahedron, Plato immediately 
assumed that it was the symbol of the universe, 
and that God must have created it in such 
a shape (M. Szurek 2000). Greek names of Pla-
tonic polyhedrons: tetraedr, hexaedr, octaedr 
and icosaedr, as well as dodecaedr, have been 
used until today in mathematic terminology in 
almost all languages of the World except Po-
lish (M. Szurek 2000).

The Greek mathematician Archimedes (ap-
prox. 287–212 BCE) created polyhedrons which 
were later called Archimedean. His works on 
polyhedrons have not survived until today, we 
can only read about them in later works of 
other authors. In contemporary descriptions 
Archimedean solids are symmetrical, semi-for-
med, semi-regular convex polyhedrons, i.e. their 
faces are regular polygons and their vertices 
are identical. Seven out of thirteen Archimedean 
polyhedrons were obtained from Platonic so-
lids by cutting them. This meant cutting vertices 
and replacing them with new faces. Thirteen 
Archimedean solids can be distinguished (fig. 4): 
truncated tetrahedron, cuboctahedron, truncated 
cube, truncated octahedron, small rhombicu-
boctahedron, great rhombicuboctahedron, snub 
cuboctahedron, icosidodecahedron, truncated 
dodecahedron, truncated icosahedron, small 
rhombicosidodecahedron, great rhombicosi-
dodecahedron and snub icosidodecahedron 
(J. D’Andrea 2011).

On each semi-regular polyhedron a sphere 
can be circumscribed and on each of its vertices 
a plane tangent to the sphere can be drawn. 
These planes form a convex polyhedron which 
is dual to the primary one. All polyhedrons dual 
to semi-regular polyhedrons are referred to as 
Catalan’s polyhedrons (T. Doroziński, Z. Pogoda 
2009). Figure 5 presents E. Catalan’s sket-
ches of his polyhedrons.

Another type of polyhedrons known in car-
tography are Waterman’s polyhedrons (fig. 6), 
a family of polyhedrons discovered around 1990 
by the mathematician Steve Waterman. Such 
polyhedron is created through the application 
of the sphere packing method within a cube. 
Tightly packed spheres which are further from 
the center than the defined diameter are re-
moved and a convex hull is formed from the 
resulting set of points. This is how a Waterman’s 
polyhedron is created.

Fig. 2. Leonardo Da Vinci Ycocedron Abscisus 
(source: www.georgehart.com/virtual-polyhedra/

leonardo.html)

Fig. 3. Platonic solids  
(J. Kepler, Harmonices Mundi, 1619)

Fig. 4. Archimedean polyhedrons  
(J. Kepler, Harmonices Mundi, 1619)

https://en.wikipedia.org/wiki/Icosidodecahedron
https://en.wikipedia.org/wiki/Truncated_dodecahedron
https://en.wikipedia.org/wiki/Truncated_dodecahedron
https://en.wikipedia.org/wiki/Truncated_icosahedron
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Jarke van Wijk (2008) introduced into carto-
graphy polyhedrons with „countless” number 
of faces (fig. 7). Myriahedron is a polyhedron 

with a “myriad” sides. The Latin word myriad 
comes from the Greek murioi meaning “ten 
thousand” or “countless”.

Polyhedral nets form through cutting some 
edges and presenting them on a surface. A single 
polyhedron can have several nets, e.g. a cube 
has eleven (fig. 8). It is therefore possible to 
create many different maps basing on a single 
projection of a sphere onto a cube. One of the 
first works connected with presentation of pol­
yhedral nets was published by Albrecht Dürer 
in Nuremberg in 1525 (fig. 9). Until today many 

cartographers refer to his Unterweisung der 
Messung and consider him a pioneer of present-
ing a sphere on surface using polyhedrons.

Fig. 5. Sketches of E. Catalana presenting semi-regular polyhedrons (source: M.E. Catalan 1865)

Fig. 6. Waterman’s polyhedrons  
(source: mathworld.wolfram.com/WatermanPolyhe-

dron.html)
Fig. 7. Myriahedron and its net according to van 

Wijk (http://www.win.tue.nl/~vanwijk/myriahedral/)

Fig. 8. Eleven nets of a  cube

http://www.win.tue.nl/~vanwijk/myriahedral/
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2. Famous polyhedral maps

The idea of dividing a sphere into parts and 
projecting them separately, dates back to Leo
nardo da Vinci. Around 1514 the famous Italian 
artist, together with his collaborators, created 
a map of the World Sphaera Mundi in which he 
used curvilinear equilateral triangular octants 
of sphere (fig. 10). The surface of the globe 
was divided into eight parts forming eight 
spherical triangles built on the equator and two 
meridians differing by 90°. Each side of the 
triangle is a circular arc with its center in the 

opposite vertex, and each octagon is combined 
in groups of four around each pole. The map 
has no graticule. Such graticule was added to 
Sphaera Mundi (Paris 1551) by Oronce Fine 
(1494–1555), in the form of circular arcs in each 
octant, symmetrical to the straight line of the 
central meridian. The projection was also used 
by Guillaume Le Testu (1509–1573) to elabo-
rate maps in 1556 and by Daniel Angelocrater 
(1569–1635) in 1616 (J. Snyder 1993).

Application of a polyhedron for construction 
of cartographic projections became an area of 
interest for the Californian architect Bernard 
J.S. Cahill (1866–1944). In 1909 he presented, 
and patented in 1913, a map of the World with 
octants arranged in such a way, that they formed 
a shape of a butterfly (fig. 11). Spherical lobes 
were limited with meridians starting from the 
longitude of 22°30’ west with each 90° interval to 
minimize discontinuity of continents. B.J.S. Ca-
hill used his own projection in which the images 
of meridians and equator limiting the lobes 
were a combination of straight lines, arcs and 
curves, not completely filling the equilateral 
triangles of the octahedron. He also published 
a variant of his map completely filling those 
triangles in conformal and gnomonic projec-
tions (fig. 12). In the case of the version basing 
on conformal projection he adapted a solution 
proposed by Oscar Adams. The author was 
deeply convinced that his map was superior 
for meteorological applications.

The “butterfly” map used to be very popular. 
During the Panama-Pacific exhibition in San 
Francisco in 1915 a competition was organized 
with the prize being a 90-day flight around the 
World. The route of that trip was presented on 

Fig. 9. Sketches of Albrecht Dürer presenting  
construction of a net of a regular icosahedron 

(source: Wikimedia)

Fig. 10. Da Vinci’s Map of the World (source: www.odt.org/Pictures/mappamun.jpg)

http://translatica.pl/translatica/po-polsku/equilateral;417604.html
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a map drawn by J.S. Cahill (fig. 13). This map 
was awarded a gold medal at the San Francisco 
exhibition. Sometime later it was also used by 
the state of California and the city of Charles-
ton to present ship routes (fig. 14).

In 1996 Steve Waterman, basing on Cahill’s 
map, first published his own “butterfly” map 
(fig. 15). He used a truncated octahedron as the 
image surface and applied a sphere packing 

method which relies on connecting the centers 
of spheres tightly packed in a cube in order to 
form a convex hull. S. Waterman selected his 

own specific polyhedron and the central me-
ridian to minimize discontinuity of the image of 
main continental landmasses. In the case of 
this version of the “butterfly” projection the me-
ridian with the longitude of 20° East was taken 
as the basis for dividing the sphere into oc-
tants.

A map of airline routes from Dubai  (fig. 16) 
is an example of contemporary application of 
a “butterfly” map. With a diagram it shows air 

Fig 11. B.J.S. Cahill’s map  
(source: Gene Keyes website)

Fig. 12. Three projection types used for the  
construction of Cahill’s map (1 – conformal,  

2 – equal area, 3 – gnomonic)  
(source: Gene Keyes website)

Fig. 13. Cahill’s map awarded in San Francisco in 1915 (source: portal Gene Keyes website)
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routes to major cities of the World, stressing 
that 1/3 of the world’s population lives within 
4 hours flight to Dubai, and the remaining 2/3 
within 8 hours (D. Flynn 2014).

Another example of a contemporary applica-
tion of Waterman’s map is an animated map 

presenting weather conditions in the world 
as well as a forecast updated every 3 hours 
(fig. 17). Its author is Cameron Beccario (Null-
schol.net).

In 2011 the “The New York Times” published 
an interesting series of maps prepared in Wa-
terman’s projection presenting the fast changing 
world of computerization, communication and 
technology (fig. 18). Various aspects of this 
topic were presented using cartograms and 
choropleth maps.

Other polyhedrons were also used for map 
preparation. In 1943 “Life” magazine published 
a projection of a sphere onto a cuboctahedron. 
This projection was elaborated by Richard 
Buckminster Fuller (fig. 19). Projection of the 
polyhedron’s edge with a constant scale of dis-
tortion is an interesting aspect of this solution 
(D. van Leeuwen, D. Strebe 2006). This pro-
jection was described in the article titled Life 
presents Buckminster Fuller Dymaxion World; 
it also presents fragments of the Dymaxion 

Fig. 14. Ship routes from San Francisco  
(source: GEO awesomeness website)

Fig. 15. S. Waterman’s “butterfly” map  
(source: Gene Keyes Wwebsite)

Fig. 16. Presentation of airline router from Dubai (source: D. Flynn 2014)

Fig. 17. Weather map in Waterman’s projection 
(source: Nullschol.net website)

http://geoawesomeness.com/wp-content/uploads/2013/12/hiddenmeanings1.jpg
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map (dynamic, maximum, and  tension) with 
instructions how to form a cuboctahedron (from 
eight equilateral triangles and six squares) 
representing the Earth’s surface. In 1946 
R.B. Fuller included a detailed description of 
his map in the patent nr US 2393676 A. It was 
the first two-dimensional map of the complete 
surface of the Earth which presented our planet 
as a whole, without high distortion and conti-
nents division into parts.

R.B. Fuller’s Airocean World Map published 
in 1954, where lands are shown without breaks, 

used a regular icosahedron as the basis for 
the projection (fig. 20). R.B. Fuller applied the 
same projection as before.

In 2012 in New York, on the 70th anniversary 
of R.B. Fuller’s map publication, the Buckmin-
ster Fuller Institute announced the Dymax 
Redux competition to design a map which would 

Fig. 18. “Butterfly” maps printed in the New York 
Times in 2011 (source: New York Times website)

Fig. 19. R. Buckminster Fuller presenting his map 
on a cuboctahedron (source: R.B. Fuller 1943)

Fig. 20. Fuller’s Airocean World Map (source: portal BLR Antique Maps Inc.)

http://translatica.pl/translatica/po-polsku/equilateral;417604.html
http://www.nytimes.com/interactive/2011/12/06/science/1206-world.html?_r=0
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refer to R.B. Fuller’s map. The winner was the 
team of designer Nicole Santucci and Wood-
cut Maps company from San Francisco. The 
winning project titled Dymaxion Woodocean 
World displays global forest densities using colo-
ured wood textures (fig. 21). Darker shade repre-
sents higher forest density (K. Andrews 2013).

3. Cartographic projection of polyhedral 
maps

Most projections used to prepare polyhedral 
maps are gnomonic projections, but B.J.S. Ca-
hill, R.B. Fuller and L.P. Lee used conformal 
projections or projections custom-designed  
for the purpose. L.P. Lee (1965) elaborated 
a conformal projection onto polyhedrons’ faces 
using elliptic functions. This feature ensures that 
there are no breaks on face edges or symme-
try lines. Also Amos Day Bradley (1905–1992) 
and Irving Fisher (1867–1947) prepared  two 
versions of an equal area projection onto an 
icosahedron (J. Snyder 1993), but instead of 
using 20 equilateral spherical triangles Brad-
ley divided the globe into four equal area fields 
which were projected onto triangles. All the 
projections mentioned above had breaks (dis-
continuity of the first derivative) along polyhe-
dron’s face edges. The unpublished projection 
of I. Fisher also introduces breaks alongside 
symmetry lines. These breaks are projected as 
angular points of curves – images of meridians 

and parallels (D. Van Leeuwen, D. Strebe 2006).
In his modified Lambert’s azimuthal equal 

area projection for polyhedral maps J. Snyder 
(1992) modified I. Fisher’s approach to discon-
tinuity between incongruent adjacent sides. 
For Platonic polyhedrons, where no incongruent 
adjacent sides exist, J. Snyder’s projection is 

equivalent to I. Fisher’s projection. Disadvan-
tages of J. Snyder’s equal area projection 
include scale differences along polyhedron 
edges and, more significantly, serious breaks 
between polyhedron surfaces and along their 
symmetry lines.

D. van Leeuwen and D. Strebe (2006) pro-
posed two equal area projections with certain 
useful features: one with constant scale on 
polyhedron edges and one with very small 
breaks along polyhedron edges. In order to 
obtain equal area projections a so-called slice-
and-dice method was implemented.

Among other authors of this type of projec-
tions one should mention: Arthur Hinks (1821), 
the author of the projections onto a cube, James 
Smith (1939) and Stefania Gurba – onto a do-
decahedron, and several more onto an ico-
sahedrons, F.V. Botley (1949, 1954) – onto  
a tetrahedron and octahedron, R. Clark (1977) 
– onto an octahedron, A.J. Potter (1925) – onto 
a tetrahedron and Charles Burky (1934–1935) 
– onto a truncated icosahedron with 32 penta-
gons and hexagons (J. Snyder 1993).

Fig. 21. Dymaxion Woodocean World map (source: Buckminster Fuller Institute website)
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D. van Wijk is the author of myriahedral pro-
jections. Sphere is projected onto a polyhe-
dron with numerous sides. Next the polyhedron 
is cut and unfolded on a plane. The resulting 
map has many cuts, but is almost conformal 
and preserves equal areas. The author pre-
sented a general approach to the selection of 
cut locations. He suggested three different 
methods: using geographical graticule, using 
recurrent division of the polyhedron and using 
geography of the Earth. The last method as-
sumes that no continents shall be cut.

Derek H. Maling (1992) described the above 
polyhedral projections as polysuperficial, and 
the most commonly used subgroup among 
them as polygnomonic. Projections used for 
polyhedral maps consist of several image sur-
faces.

4. Polyhedral projections in GIS

Of all the popular GIS programs only ArcGIS 
by ESRI has built-in functions allowing for vi-
sualization of data using polyhedral projection. 
With this software we can prepare a map in 
R.B. Fuller’s projection. In most GIS programs 
there is an option of preparing polyhedral 
maps using gnomonic projection. Today, when 
we have access to free geographic data and 
map editing programs, we can prepare such 
a polyhedral map on our own, e.g. in QGIS.

Data can be obtained e.g. from Natural 
Earth portal. It contains geographical data 
which can be used to prepare a map of the 
World. From the Free and Open System of 
Geographic Information portal one can down-
load a free QGIS software for preparation of 
maps and geographical data bases.

In QGIS software there are no ready solu-
tions for creating maps in polyhedral projec-
tions. However such maps can be elaborated 
by dividing the sphere of the Earth into zones 
by projecting the sides of a polyhedron onto 
a sphere. Next, one has to prepare a map in 
oblique gnomonic projection, separately for 
each zone and stick the resulting map frag-
ments together into a whole map.

For example, we can prepare a map with its 
surface being a regular octahedron, i.e. similar 
to B.J.S. Cahill’s map. A regular octahedron 
consists of eight equilateral triangles. The radius 
of the sphere inscribed into a regular octahe-
dron equals:

6
6aR =

where a is the length of the side. The radius of 
the sphere should equal R = 6371 km, the 
length of the side of the octahedron will be 
a = 15 605,699 km. Following B.J.S. Cahill’s 
assumption that the division of the sphere into 
lobes will start at λ = 22°30' meridian and then 
at every 90°, eight meridian zones are obtained 
(four on the northern hemisphere and four on 
the southern hemisphere) with axial meridians 
at λ0 = 22°30', 112°30', –67°30', –157°30'. A car-
tographic oblique gnomonic projection tangen-
tial at 35°15'52'' is applied for the zones in the 
northern hemisphere and at –35°15'52'' for the 
zones in the southern hemisphere. Parame-
ters of the projection of an exemplary zone de-
clared in QGIS are as follows:

+proj=gnom +lat_0=35.2644444444 
+lon_0=22.5 +a=6371000 +b=6371000 
+units=m +no_defs

A map of this zone prepared in QGIS is pre-
sented in figure 22. The map as a continuous 
image of the whole globe is presented in figu-
re 23. However, despite the division of the 
sphere into parts it shows significant distor-
tion. Distribution of distortion in one of the zo-
nes is shown in figure 24.

In the central point there is zero distor-
tion. Highest distortion appears in triangle ver-
tices: extreme length scales m = 1.732048, 

Fig. 22. One of the zones of a map in a gnomomic 
projection onto a regular octahedron
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n = 2.999992, area distortion scale p = 5.196131, 
angular distortion ω = 31°.

5. Virtual polyhedral globes

Polyhedral globes have been known for over 
200 years. In 1803 Christian Gottlieb Reichard 

(1758–1837) prepared a globe in the shape 
of a cube, and called it Erdkubus. In 1833 
J.W. Woolgar introduced a projection of the whole 
Earth onto a cube. In 1851 J.N. Adorno paten-
ted the globe of the Earth in the shape of an ico-
sahedron, and in 1877 J.M. Boorman patented 
a series of polyhedral globes (J. Snyder 1993).

Fig. 23. Map of the World on a regular octahedron

Fig. 24A. Distribution of distortion in gnomonic projection of one of the faces of a regular octahedron:  
A – isolines of extreme scales of distortion of length m; B – isolines of extreme scales of distortion of length n;  

C – isolines of scales of area distortion; D – isolines of extreme angular distortion
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Polyhedral globes enjoyed popularity also in 
Poland. Jan Walery Jędrzejewicz (1835–1887) 
was the first to propose globes assembled from 
cardboard. In his article from 1887 he published 
a prototype of such a globe map (J. Jędrze-
jewicz 1887). In 1948 “Przełom” publishing 
house printed a map by Władysław Milata 
(1911–1954) and Wojciech Walczak (1916–1984) 
which could be folded into a globe. The map 
was divided into 20 triangles. In 1976 maps 
of a folding dodecahedral globe (J. Piasecka 
2004) were published in the Department of Car-
tography at Maria Curie-Skłodowska University 
in Lublin. The authors were employees of the 
Institute: Stefania Gurba (1930-2010) and Fran-
ciszek Uhorczak (1902–1981). In a series of 
articles S. Gurba presented the rules of the 
globe preparation and its applications, such as 
the course of orthodrome on it (S. Gurba 1970).

At present digital maps and virtual globes are 
elaborated. Despite built-in options of sphere 
visualization many 3D modeling tools permit 
only to elaborate globes in the shape approxi-
mated with polyhedrons. For example, in VRML 
(Virtual Reality Modelling Language) editing 
a simple globe is a very easy task. It is enough 
to prepare a map in the Plate Carree equirect-
angular projection (fig. 25) and overlay it on 
a sphere placed in a virtual world, as a “sphere” 
node. However the final result may not be satis-

factory (fig. 26). Numerous breaks in meridians 
and parallels on the globe show that the effect 
is far from being perfect. In order to prepare 
a virtual globe in this language one should 
rather apply one’s own polyhedral construction 
and a map in polyhedral projection.

A 3D model of a polyhedron, e.g. a regular 
octahedron with a map of the World can be 
realized on one’s own. Below is the source code 
in VRML and the final result in the form of a 3D 
model. To prepare a virtual octahedron using 
the below code, the map from figure 23 must be 
saved in JPEG format in a file named cahill.jpg.

#VRML V2.0 utf8
Shape {
   appearance Appearance {
   texture ImageTexture { url “cahill.jpg” }
   }
   geometry IndexedFaceSet {
      coord DEF COORD Coordinate {
      point [0 0 1, 0 1 0, -1 0 0, 0 –1 0, 1 0 0, 0 0 –1
         ]
         }
      �coordIndex [0 1 2 –1, 0 2 3 –1, 0 3 4 –1, 0 4 

1 –1, 5 2 1 –1, 5 3 2 –1, 5 4 3 –1, 5 1 4 –1 ]
         �texCoord DEF TEXCOORD TextureCoor-

dinate {
            �point [0.5 0.75, 0.25 1, 0.25 0.5, 0.5 

0.25, 0.75 0.5, 0.75 1, 0 0.75, 0.25 0, 
0.75 0, 1 0.75]}

            �texCoordIndex [ 0 1 2 –1, 0 2 3 –1,  
0 3 4 –1, 0 4 5 –1, 6 2 1 –1, 7 3 2 –1, 	
8 4 3 –1, 9 5 4 –1]

      }
      }

Fig. 25. Map of the World in Plate Carre projection

Fig. 26. Virtual globes in VRML
Fig. 27. Virtual regular octahedron with a map  

of the World
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In the above code we can distinguish two 
main parts. The first starts with the keywords 
geometry IndexedFaceSet. Here the coordinates 
of the polyhedron’s vertices are given coord 
DEF COORD Coordinate and it is defined which 
of polyhedron’s vertices create particular trian-
gles. In the second part, starting with texCoord 
DEF TEXCOORD TextureCoordinate, the co-
ordinates of the points of division of the loaded 

map into triangles are given. Figure 27 pres-
ents the result of the application of the above 
code.

Virtual globes using different polyhedrons 
can be prepared analogically. Figure 28 pres-
ents a map of the World in gnomonic projec-
tion onto a dodecahedron, and figure 29 shows 
a virtual globe basing on it. The map was pre-
pared following the assumptions published in 
the article (S. Gurba 1970). Regular and irregu-
lar polyhedrons can be formed analogically. 
Increasing the number of sides helps to achieve 
a surface approaching a sphere.

6. Conclusions

Polyhedrons are used in cartography to pre-
pare maps presenting continents in continuous 
form and with little distortion. Maps prepared in 
such projections present relations between 
continents better than, for example, maps in 
the WebMercator projection used on websites. 
Perhaps using such maps would be a better 
solution than that proposed by Google. Poly-
hedral maps were and are very popular, espe-
cially among architects and mathematicians, 
who often author them. Their popularity is proven 
also by the fact that they appeared on post 
stamps (fig. 30).

Unassisted preparation of maps and globes 
based on polyhedrons not only helps to learn 
the geography of the World, but also to become 
familiar with various types of polyhedrons. 
Therefore it can find its way into the area of 
didactics. We can not only present image of 
the Earth on surface but also assemble a poly-
hedron from such a map.

Fig. 28. Map of the World on a dodecahedron

Fig. 29. Virtual dodecahedron with a map  
of the World

Fig. 30. Polyhedral maps on post stamps 
 (source: portal geo-mexico)

http://geo-mexico.com/?tag=stamp
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Globes in the form of polyhedrons are easy 
to construct and can be built by practically any-
one, unlike spherical globes, the construction 
of which requires substantial knowledge and 
high precision. Polyhedron nets onto which the 
surface of the earth and other planets have 
been projected can be found online. For example, 
on Progonos.com there are ready-to-print poly-
hedron nets with maps of the Earth. Views of 
the Solar System portal which presents nets of 
planets and moons of the solar system is also 

recommended.
Another interesting example of polyhedral 

maps is a puzzle on the website of Susanne 
Schuricht (2001), which uses a projection of the 
Earth surface onto an icosahedron (fig. 31).

The topic of cartographic projections is per-
ceived as a “necessary evil” in the didactics of 
geodesy and cartography, but the above exam-
ples show that such issues can remain entertain-
ing and at the same time still convey interesting 
information.

Fig. 31. Puzzle with a map of the World on a regular icosahedron (source: S. Schuricht 2001)
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