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Abstract: The inaugural challenge of the 2016 Creative 
Construction Conference has posed two related questions 
on how many possible criticality constellations with dif-
ferent behaviors for delays and acceleration exist and how 
said constellations can occur for nonlinearly and monot-
onously progressing activities that have continuous rela-
tions. This paper systematically solves these questions 
by performing a thorough literature review, assembling 
theoretical foundations for link constellations, perform-
ing a computer simulation of all possible permutations, 
and providing a mathematical proof by contradiction. 
It is found that (for the initially assumed self-contained 
activities in a network schedule that exhibit only a lin-
early growing production), three newly hypothesized 
criticality constellations cannot exist. Nonlinear activity 
constellations with diverging or converging relative pro-
ductivities are examined next. Lags in networks become 
buffers in linear schedules. It is found that a nonlinear 
curvature of the progress may induce middle-to-middle 
relations besides those between start and finish. If mul-
tiple curvatures are allowed, then partial segments can 
form relations, which increase the number of criticality 
constellations. This paper is extended from the 2017 Pro-
cedia Engineering conference version.

Keywords: precedence diagramming, link constellations, 
continuous precedence relations, classification of critical 
activities

1  Introduction
The theory of network schedules in construction project 
management is celebrating its 60th anniversary after 
Kelley and Walker (1959) conceived the widely known criti-
cal path method around December 1956 (Kelley and Walker 
1989) for schedules that are represented as networks. It 
constitutes a simplified form of linear programming with 
a rigorous equation structure of start plus duration equals 
finish (S + D = F) for all activities. It has two “passes”: first, 
adding all activity durations sequentially from the origin 
and taking the maximum at any merge of several predeces-
sors under an “as-early-as-possible” assumption (forward 
pass, which also gives the project duration) and second, 
subtracting all activity durations sequentially from the 
terminus and taking the minimum at any merge of several 
successors under an “as-late-as-possible” assumption 
(backward pass). If links carry lead or lag durations, they 
are added or subtracted analogously. Comparing the ear-
liest and latest start and finish points from these passes 
determines the flexibility (float) of activities to be delayed 
without harm. Like activities and leads or lags, float is 
measured in time units, commonly workdays. If it is zero, 
the activity is deemed critical. This means that its delay 
will immediately impact the project duration. Of interest 
for this paper is how the link types in the sequence impact 
the possible criticality of an activity.

2  Literature review
Recent papers by Hajdu (e.g., 2015b) have renewed a 
focus on the development and theory of the precedence 
diagramming method by Fondahl (1962) as expanded by 
IBM (1964) to four different link types, as opposed to the 
default finish-to-start link that had limited the realism 
of the critical path method of Kelley and Walker (1959).  
Continuous relations between two activities with repetitive 

 © 2018, Lucko and Su, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

*Corresponding author: Gunnar Lucko, Catholic University of 
America Washington, DC UNITED STATES, E-mail: lucko@cua.edu 
Yi Su, Postdoctoral Research Associate Department of Civil  
Engineering Catholic University of America, E-mail: 61su@cua.edu



� Lucko and Su, Precedence permutation patterns creating criticality constellations   1675

tasks were shown as a multitude of task links (Hajdu 
2015b). The transition from end-point links to true contin-
uous relations between activity pairs was demonstrated 
for monotonous and invertible functions to model nonlin-
ear progress of activities (Hajdu 2015a), e.g., increasing or 
decreasing productivities that are caused by a changing 
numerator or denominator, e.g., learning or fatigue, or a 
changing geometry of the work product itself, e.g., a deep-
ening trench.

Theoretical studies of network scheduling have punc-
tuated its history, which this paper can only review briefly. 
Roy (1959) named the metra potential method after his 
consulting firm. Unknown to Fondahl (1962), it pioneered 
activity-on-node diagrams instead of activity-on-arrow 
diagrams by Kelley and Walker (1959) and enabled links 
between activity starts. Confusingly, the name of non-
time-scaled network diagrams has become intermingled 
with another technique, the program evaluation and 
review technique (Fazar 1962), which introduced a three-
point estimate of probabilistic durations. Interestingly, 
the literature continued to mention the complete four 
different link types (see Section 2.1) only after scheduling 
calculations were explained (Harris 1978), which fittingly 
echoed their historically “later” addition to theory.

Besides describing antecedents of linear schedules, 
which have been reviewed by Lucko and Gattei (2016), Rösch 
(1970) compared the methods of Roy (1959) and Fondahl 
(1962) with small examples in bar chart, network sched-
ule, and linear schedule representations, including some 
older variants. Wiest (1981) made a seminal contribution by 
describing how activity pairs can be linked in a manner that 
impacts the project duration in a normal, reverse, neutral, 
or perverse manner. Kallantzis and Lambropoulos (2004) 
showed how such a reverse behavior is explained with a 
linear schedule.

Hajdu (2015c), in a review of precedence diagramming 
for which this author provided sources from the literature, 
highlighted studies that recently have sought to general-
ize end-point links to newly being able to attach anytime 
during mid-activity: The chronographic method (e.g., 
Francis 2004) and graphical diagramming method (Ponce 
de Leon 2008) for time-scaled precedence diagrams 
(Harris 1978) (called line schedules for short), which unlike 
bar charts, hold multiple activities per row and may have 
evolved from the arrow diagramming method; the “bee-
line” diagram (Kim 2012) that also allows multiple links 
between point pairs on two activities; and the relationship 
diagramming method (Plotnick 2006), whose single link 
carries some explanatory codes. Yet the assumptions of 
these methods are beyond the scope of this paper as are 
maximum lags as links constraints (Hajdu (1997), which 

may act jointly with minimum ones or act alone. Mubarak 
(2015) described a “dynamic” but ultimately limited 
concept of minimum lag, whose predecessor can have a 
flexible shape. More pertinent to this paper is the gener-
alized case of continuous precedence relations that Hajdu 
et al. (2017) have written with singularity functions, which 
can model nonlinearity in both the activity progress and 
buffers between them.

2.1  Network schedule assumptions

Assumptions for this paper have been set by the challenge 
(Hajdu 2016; Hajdu et  al. 2016) as representing sched-
ules as activity-on-node networks, i.e., acyclic (no loops) 
graphs, which are directional from an origin to a terminus 
node, whose activities are connected at their ends via dis-
crete end-point links and progress at a constant productiv-
ity without interruptibility.

Assuming that two activities are connected via only 
one link and that it may attach at either the start or finish 
of a predecessor and successor, 2 × 2 = 4 possible one-link 
relations can exist: finish to start, start to start, finish to 
finish, and start to finish. Broadening this common list 
to connect the four start and finish points of the activity 
pair with more links gives two-link, three-link, and four-
link end-point relations (the upper limit) as follows. Each 
link can carry a lead or lag, which means either a period 
seen from predecessor or successor view (Crandall 1973) 
or a negative or positive link duration (Mubarak 2015). 
Together, 15 different permutations of connecting the 
activity pair can exist as follows:
•	 one-link permutations: {FS}, {SS}, {FF}, and {SF}
•	 two-link permutations: {FS, SS}, {FS, FF}, {FS, SF},  

{SS, FF}, {SS, SF}, and {FF, SF}
•	 three-link permutations: {FS, SS, FF}, {FS, SS, SF},  

{FS, FF, SF}, and {SS, FF, SF}
•	 four-link permutations: {FS, SS, FF, SF}

2.2  Challenges of criticality constellations

Following a listing of the four one-link end-point rela-
tions, the inaugural challenge of the 2016 Creative  
Construction Conference (Hajdu 2016) has classified the 
criticality constellations by whether an increase (i.e., 
delay) or decrease (i.e. acceleration) in the activity dura-
tion will cause the project duration to increase, decrease, 
or not be impacted (+, −, or 0, respectively). The challenge 
illustrated this phenomenon with influence lines, which 
have roots in early scheduling literature (Mauchly 1962).  
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Table 1 lists three newly hypothesized constellations that 
have been derived by creating 3 × 3 = 9 permutations of 
possible impacts on the project duration from shorter 
activities and longer activities (Hajdu 1997, expanded from 
Bokor and Hajdu 2015). It makes the implicit assumptions 
that a change in duration will result in a respective move-
ment of a “free” activity end and that only end-point links 
with discrete lags (not continuous relations with buffers 
like in linear schedules) exist.

Despite the longstanding and rich research in the 
area of construction scheduling, surprisingly such an 
interaction of link structures and the criticality that they 
can potentially generate (as Table 1 summarizes) have not 
been researched exhaustively. Therefore, a conjecture has 
been created (Hajdu 2016, p. 12), which poses the chal-
lenge that this research explores:
•	 The number of critical activity types does not change 

if … non-linear strictly increasing continuous activity 
production-time function, … point-to-point relations … 
and continuous relations are allowed in the network.

The subsequent paper (Hajdu et  al. 2016, p. 10) 
rephrased this conjecture somewhat:
•	 Critical activities of the generalized PDM network 

described in … this paper can be classified into the 
same six classes as critical activities of the traditional 
PDM model with the four end-point relations.

This conjecture is addressed through three research 
questions that the research methodology will investigate 
in turn:
•	 Research question 1: How many criticality constel-

lations with different behaviors due to changes in 
duration exist in network schedules with linearly pro-
gressing activities that are connected with discrete 
end-point link relations?

•	 Research question 2: How can said criticality constel-
lations occur for nonlinearly and monotonously pro-
gressing activities that are connected with continuous 
relations? This question will be examined by using 
linear schedules.

•	 Research question 3: How can influence lines, which 
visualize how the duration of a single activity influ-
ences the total project duration, be generalized to con-
stellations of multiple activities?

2.3  Research goal and objectives

The goal of this research is to understand the possible 
varieties of criticality that arise from different relations 
between activities in network schedules and linear sched-
ules, which are addressed via three research objectives:
•	 Research objective 1: identify and prove mathematically 

possible number of different criticality constellations.
•	 Research objective 2: investigate existence of possi-

ble criticality constellations that include nonlinear  
activities.

•	 Research objective 3: generalize influence lines toward 
including predecessors and successors of activities.

3  Methodology
The methodology uses a theory-building approach that 
enumerates and simulates all possible permutations of 
links between activities to gain the understanding to for-
mulate the desired proof, illustrated by network and linear 
schedule constellations. A pertinent selection of permu-
tations is shown for brevity. Whereas the challenge only 
displayed a single activity with its in-links and out-links 

Tab. 1: Criticality configurations with impact of activity change on project duration (after Hajdu 1997).

Activity Project Activity Project Incoming Outgoing Description Name

+ + − − FS FS Normal–normal +−
+ − − + FF SS Reverse–reverse −+
+ 0 − 0 FS SS Start–neutral 00

FF FS Finish–neutral
+ + − 0 FS SS, FS Normal–neutral (in) +0

FS, FF FS Normal–neutral (out)
+ 0 − + FF SS, FS Neutral–reverse (in) 0+

FS, FF SS Neutral–reverse (out)
+ + − + FS, FF SS, FS Normal–reverse “perverse” ++
+ − − 0 Unknown Unknown Reverse–neutral −0
+ 0 − − Unknown Unknown Neutral–normal 0−
+ − − − Unknown Unknown Reverse–normal ––
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(Hajdu et al. 2016) without distinguishing or showing how 
exactly they attach to the predecessor and successor, this 
paper examines the full triplet of activities with explicit 
link types as shown in Figure 1 with 15 permutations for 
the links in each of its two pairs, which gives a total of 
15 × 15 = 225 permutations. Following the proof, nonlinear 
activities are reviewed regarding criticality and float by 
using linear schedules that show work over time, nonline-
arity is discretized with multiple segments, buffers replace 
lags as discrete end-point links become continuous rela-
tions, and their constellations are examined as to their 
behavior. The scope of this paper is limited to minimum 
constraints; future research will explore how maximum 
constraints, which Hajdu (1997) studied for networks and 
Reis and Lucko (2016) for linear schedules, cause critical-
ity configurations.

4  �Research question 1: analysis of 
criticality constellations

4.1  Computer simulation of all permutations

The aforementioned 225 permutations have been simu-
lated in a computer implementation. The activity sequence 
is predecessor (pred), current activity (act), and successor 
(succ). Each activity is connected with at least one other 
activity (Figure 1), and the coding ensures that the current 
activity is never “skipped” by only connecting its predeces-
sor and successor, which would preclude calculating a valid 
start and finish. Such “bypassing” links that could connect 
the predecessor directly with the successor are technically 
conceivable but are excluded here for brevity and may be 
examined in future research. Formulas for incoming (in) 
and outgoing (out) links of a current activity have been 
implemented in a forward pass calculation. Randomized 

variables are integer durations of the three activities within 
a set range and lags of all in-links and all out-links. If 
in-links and out-links (n.b. they are minimum constraints) 
give different tentative start or finish dates, the maximum 
value is used to maintain the integrity of all non-interrupti-
ble activity durations as start plus duration equals finish 
(S + D = F). Outputs are counts of the randomized three-ac-
tivity schedules as to whether they incur {+−}, {−+}, {00}, 
{+0}, {0+}, {++}, {−0}, {0−}, or {−−} behavior of the project 
if the activity duration increases or decreases (both of 
which are examined in parallel). Comparing the project 
finish, i.e., successor finish Fsucc, between unchanged and 
increased or unchanged and decreased current activity 
duration gives the desired counts. An actual result of the 
simulation is, e.g., 96 + 8 + 75 + 30 + 14 + 2 + 0 + 0 + 0 = 
225 (in the order of listed behaviors). The cases of {+−} {00} 
are unsurprisingly observed most often. Three hypotheti-
cal cases {−0}, {0−}, and {–−} are marked to give an alert if 
incurred. Both simulation runs were executed for several 
thousand instances. None of them ever generated any {−0}, 
{0−}, or {−−} behavior. The simulation implies that these 
three cases are either very rare or do not exist. While it is 
not validation by itself, this finding informs the following 
mathematical analysis of criticality constellations to gain a 
proof for or against their possible existence.

4.2  Proof by contradiction

If any activity pair is connected by more multiple different 
link types, unless their lags happen to give exactly the same 
start and finish of the successor, one of them will typically 
dominate and can be treated like a single FS, SS, FF, or SF 
link or the common SS–FF combination that synchronizes 
the extent of their concurrent performance. In fact, sched-
ulers would consider connecting activity pairs with multi-
ple link types to be redundant and superfluous. Therefore, 
while lags can clearly greatly affect the simulation results, 
it suffices to examine only dominant behavior. As men-
tioned, mathematically this is represented as Sact = max{F-
pred + FSlag, Fpred + FFlag − Dact, Spred + SFlag − Dact, Spred + SSlag}.

The triplet of activities is examined in two pairs regard-
ing their constellation and behavior. The normal, neutral, 
and reverse basic cases of Figure 2 prove in and of them-
selves that the {+−}, {−+}, and {00} behaviors are possible. 
The cases of Figure 2 prove that {+0}, {0+}, and {++} exist. 
Combining the desired properties gives the following:
•	 {0−}: on the one hand, the neutral property 0? means 

that a longer activity causes the project duration to stay 
the same (? is a placeholder for shorter activity). This can 
only occur if the activity is held at one end and the other 

FFin

SFin

SSin

FSin

FFou

FSout

SFout

SSout

Pred

Act

Succ

Potential
Incoming
Relations  

Potential
Outgoing
Relations  

Fig. 1: Activity triplet with relations.
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end can rotate (earlier if finish is held or later if start is 
held as shown in Figure 2c and d). Predecessor and suc-
cessor links must effectively bypass the current activity. 
On the other hand, the normal property ?− means that 
a shorter activity causes a shorter project. This can only 
occur (for end-point links) if the predecessor holds the 
current activity at its start, which is held at its finish by the 
successor (in analogy to the property placeholder, these 
requirements can be represented as ?S-S? or ?F-F? for 
the neutral property and ?S-F? for the normal property, 
where the two activity pairs are separated by a hyphen). 
These two requirements contradict; {0−} is impossible.

•	 {−0}: on the one hand, the reverse property −? means 
that a longer activity causes a shorter project. This 
can only occur (for end-point links) if the predecessor 
holds the current activity with a ?F and the successor 
holds it with a S?. This reverses the criticality flow 
through it. It must start earlier to be longer and pull 
its successor earlier as well. On the other hand, the 
neutral property ?0 means that a shorter activity does 
not impact the project duration. Thus, one free end 
of the current activity can rotate as shown in Figure 
2c and d, while its other end is held by either ?S-S? or 
?F-F? as links from the predecessor and to the succes-
sor. These requirements contradict; {−0} is impossible.

•	 {−−}: the same reasoning as for the previous two 
cases applies. To summarize, the −? property requires 
a “hinge” constellation of ?F-S? among the triplet. 
However, the ?− property requires a free end to rotate 
(?S-S? or ?F-F?). These requirements contradict. The 
behavior {−−} is impossible. Therefore, the three 
hypothesized cases that combine these properties 
cannot exist, which matches with the randomly gener-
ated output of the computer simulation.

The special case of “perverse” behavior shown in Figure 2f 
merits attention. Different than the other basic cases, it 
has two links between each activity pair. These let it switch 
the dominant link pair from increased to decreased current 
activity duration. This gives the interesting but practically 
undesirable effect that project duration always increases.

4.3  Role of start-to-finish relation

The start-to-finish relation, which almost, but not quite 
inverts the logic of the activity pair, is rare among FS, SS, 
FF, and SF in practice, and actual examples have proven 
difficult to find in the authors’ experience. A real-world 
case where this is appropriate is, e.g., installing a prefab-
ricated stair in an atrium, where the start of its installa-
tion triggers the finish of the façade panels, in which an 
opening has been left to lift and move the stair into the 
building. Since it is noticeably absent from the basic cases 
of Figure 2, it is merited to explore its role. If predecessor 
and successor are assumed to not change (as they are 
here), then some basic cases can be created using SF and 
lag with the same start and finish points but would have 
changed criticality. Figure 2e could use FF-SF, SF-SS, or 
SF-SF, whose lags would be one or two activity durations, 
but the predecessor or successor would become noncriti-
cal. In Figure 2c and d, if the second (first) link could be 
replaced by SF, then the successor (predecessor) would 
become noncritical. However, SF cannot create other cases 
(Figure 2a and b) whose behavior hinges on a normal direc-
tion of the criticality flow through the current activity. To 
explain the special role of SF, note that FS traverses both 
activities, SS and FF one each (in successor or predeces-
sor only), but SF circumvents both, which gives it a special 
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(b) (d) (f)
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Fig. 2: (a) Normal by FS-FS; (b) normal by SS-FF; (c) finish–neutral by SS-SS; (d) start–neutral by FF-FF; (e) reverse by FF-SS; (f) perverse by 
SS, FF-SS, and FF; (g) partially critical by MM-MM.
Note: Some essentially equivalent cases are omitted here for brevity.
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role of preventing any criticality constellations. This would 
even allow a triplet of start/finish–neutral activities with 
either SF-FF or SS-SF, which (if understanding criticality 
that a duration change will impact the project finish and 
assuming that a duration change also moves the “free” 
activity end while holding the other fixed) would mean 
that all three activities act as noncritical.

5  �Research question 2: analysis of 
nonlinear progress

5.1  Extension to linear schedules

To represent nonlinear activities, it becomes necessary to 
use linear schedules, because they show the changing pro-
ductivity as positive or negative curvature or straight lines, 
which can be interpreted as learning, fatigue, or fixed pro-
gress. End-point-link lags of network schedules become 
continuous buffers, which are represented as gray shaded 
areas in linear schedules. Note that they can be quantified 
either in time or work units, which gives a different shape 
at buffer ends (Lucko and Peña Orozco 2009). This paper 
treats time buffers. Lucko (2008, p. 8) showed a “range rela-
tionship” as the limit of increasingly many end-point links 
between two activities with linear progress and demon-
strated (Lucko 2009) how with activity productivities, 
buffers, and sequence as input, the SS or FF links automati-
cally emerge as output of a two-dimensional (2D) (work and 
time) linear schedule. However, a one-dimensional (time 
only) network schedule requires specific link types as input 
for the critical path method or precedence diagramming 
method, which requires a priori decisions by the scheduler 
and hampers using concurrent activities (Allen 1983) that 
could minimize project duration (Hajdu 1997).

5.2  Partial criticality

Harmelink (2001) demonstrated that any continuous 
monotonously progressing activity in a linear schedule 
can be partially critical and that such partial criticality 
can create no more than three different segments from its 
start to its finish: start–noncritical, critical, and finish–
noncritical. Further analysis reveals special cases where 
one or multiple segments may have a length of zero. All 
activities, including nonlinear ones, can be reduced to 
such cases. For example, activities in Figure 2a have non-
critical segments of zero length, i.e., they contain only a 
critical segment, but the current activity in Figure 2c and d 

shows a finish–noncritical and start–noncritical segment. 
Noncritical segments can be understood as free ends of 
an activity that can rotate and consume rate float (RF) 
(Awwad and Ioannou 2007) by starting earlier (accelerate, 
RFa) or finishing later (slowdown, RFs), while the middle 
critical segment is held from both ends. Note that starting 
earlier proactively may be somewhat unrealistic in prac-
tice, as delays are not usually anticipated.

If activities are discretized with straight-line seg-
ments, this means that activity constellations with at most 
three segments of different productivities would need to 
be studied. For monotonous curvature as the conjecture 
assumes, the critical segment in the middle is reduced to a 
single point of contact. As Figure 2g shows for discretized 
activity segments of different productivity, this means that 
an activity pair with one or both nonlinear activities can 
only connect at their start or finish to form an end-point 
SS or FF or a mid-point pair for a mid-point relation (MM). 
Like SS and FF, this relation automatically emerges in 
linear schedules with nonlinear progress from the relative 
slopes and curvature of an activity pair, whereas the afore-
mentioned various studies on network extensions had 
to define it deliberately as a generalized mid-point link 
without realizing its important role. The critical segment 
of the current activity has a normal–normal impact on the 
project duration; the two noncritical segments have RF.

5.3  Float in linear schedules

Float in linear schedules that is consumed by rotation 
of an activity segment has been called (productivity) RF 
to indicate that the longer or shorter duration is created 
by a lower or higher productivity. It is measured in work 
units divided by time units, and the value at the activity 
start and finish is equal to the free float of said activity in 
time units. Figure 2c and d shows that RF is limited by the 
extent of the predecessor buffer (RFa) or successor activity 
(RFs). Consuming more than them would change the criti-
cality and thus is beyond the scope of this paper.

For the criticality analysis, this paper establishes a 
new float type, whose definition may appear counterintui-
tive. This new concept is based on the fact that critical seg-
ments can change productivity and duration in practice. 
Same as for RF, the edge length of AF in time units is the 
increase or decrease in duration before criticality changes.
•	 Apparent float is defined as RF by which a critical 

activity segment in a linear schedule could be delayed 
but start earlier (AFs) or shortened but finish later (AFa) 
without becoming noncritical, as Figure 2e illustrates. 
Its rotational value is limited by the predecessor buffer 
(AFs) and the slope of the current activity itself (AFa).
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5.4  Nonlinear activity progress

Assuming that nonlinear activity progress exhibits a 
monotonous behavior, an activity could have an increase, 
decrease, or no change in productivity in the work–time 
diagram of a linear schedule. In analogy to the basic 
cases, further pairs and triplets will be studied in regard to 
criticality constellations. Concave or convex shapes with 
a single positive or negative curvature can be compared 
to adjacent activities by whether their average slope is 
higher or lower, as shown by the dashed lines in Figure 3. 
They can thus be reduced to a known basic case that 
forms either SS, FF, or both SS and FF relations. Thus, the 
diverging Figure 3a and b are equivalent, as are the con-
verging Figure 3c and d. Parallel (or balanced) progress 
exists if the average activity productivity and its buffers 
are equal for an activity pair; Figure 3e demonstrates that 
this is possible for {negative–zero}, {zero–positive}, and 
{negative–positive} curvature pairs that bend “toward 
each other.” Figure 3f shows that for {positive–negative} 
pair, it is impossible; it will instead form an MM relation 
(IBM 1964). The number of permutations of {high, low, 
equal} slopes is given by selecting two of four nonlinear 
triplet links with replacement, which is calculated as  
42 = 16 criticality configurations, which are listed as 
follows: {SS-SS}, {SS-FF}, {FF-FF}, {FF-SS}, {SS-(SS,FF)}, 
{FF-(SS,FF)}, {(SS,FF)-SS}, {(SS,FF)-FF}, {(SS,FF)-(SS,FF)}, 
{SS-MM}, {FF-MM}, {MM-SS}, {MM-FF}, {MM-MM}, 
{(SS,FF)-MM}, and {MM-(SS,FF)}.

Allowing multiple curvatures within nonlinear activi-
ties (shown as S-curves in Figure 3) increases the number 
of criticality constellations, because an activity pair may 
now develop not just point-to-point MM links as shown in 
Figure 3g but may align in any or all of their three partial 
criticality segments as shown in Figure 3f, which has a 
continuous relation from SS to MM. A constant buffer is 
assumed here. The observation of Harmelink (2001) on 
(start–noncritical, critical, finish–noncritical) partial 

criticality segments remains valid, and each of these 
three segments can have a zero or nonzero length, so 
that it may be more appropriate to label the activity pair 
by which of these three segments are related. Permuta-
tions are now selected from SS, FF, MM, (SS,FF), plus new 
aligned segment relations of start–noncritical, critical, 
and finish–noncritical (SN, CC, and FN) for a maximum 
two of seven with replacement, which is 72 = 49.

6  �Research question 3: 
generalization of influence lines

Influence lines have been used to graphically represent 
how changes in the duration of a single activity impact 
the project duration (Hajdu et  al. 2016). However, it is 
simplistic and inaccurate to assume that the only deter-
mining factor for project duration is just the activity dura-
tion itself. Rather, its interaction with its predecessors 
and successors constitutes a three-way sensitivity analy-
sis. Figure 2 has illustrated the possible constellations of 
three relative durations. Yet, three activity durations plus 
one project duration cannot be represented in a single 
three-dimensional (3D) diagram, so that each diagram is a 
“snapshot” for a specific activity duration between its pre-
decessor and its successor. An animation of several such 
diagrams can show the dynamic interaction of a sequence 
of three activities vis-à-vis the dependent variable project 
duration. Figure 4a and b shows such snapshots for 1 day 
and 4  days duration of the activity, respectively, assum-
ing the same time buffer of 1 day as in the previous exam-
ples. It is proposed to call these new diagrams influence 
surfaces. They resemble the constellations of Figure 2b 
and e but additionally show the effect of varying both the 
predecessor and successor durations. Reading them is 
straightforward, as distinct zones emerge. For example, in 
Figure 4b, the horizontal plateau zone indicates that the 

(a) (c) (e) (g)
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Work SS
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High-low (diverging)

Time

Work SS

Low-high (converging)

Time

Work FF
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Work MM

(b) (d) (f ) (h)
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Time

Work FF

High-low (diverging)

Time

Work SS

Partial criticality

Time

Work MM

S-curves (equal-diverging)

Time

Work SS
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Fig. 3: Relative productivities of nonlinear curvatures. (a) Negative diverging; (b) positive diverging; (c) negative converging; (d) positive 
converging; (e) negative-zero–positive equal–equal; (f) positive–negative partial criticality; (g) S-curves equal–equal; and (h) S-curves 
equal–diverging.
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project duration remains fixed at 6 days for both the pre-
decessor and successor taking between 0 day and 4 days. 
Figure 4c illustrates two points on the influence surface as 
linear schedules, here with the predecessor and successor 
from Figure 4b at 1 day (because a zero duration would be 
unrealistic) and 4 days. Note that these predecessor and 
successor ranges coincide with the newly defined appar-
ent float of the activity, except that apparent float keeps 
criticality unchanged while allowing the project duration 
to vary, but the influence zone here has a fixed project 
duration for varying predecessor and successor durations. 
The remaining three influence zones – sloped areas in the 
diagram – are explained as follows: If either the predeces-
sor or successor grows their duration above 4 days, then 
the project duration grows proportionally. If both increase 
together, then the project duration grows more due to 
their combined effect. Each zone represents how changes 
in activities will impact the project.

criticality constellations can be extracted from con-
sidering multiple influence surfaces (i.e., an influence 
solid whose dynamic layers are said as influence surfaces). 

Figure 4d shows several of these activity durations in 
blue, yellow, and green (1 day, 8 days, and 16 days, respec-
tively). The point where a vertical red line in Figure 4d for 
predecessor–successor combinations crosses each influ-
ence surface gives project durations, which when plotted 
over the activity duration of each layer gives exactly the 
aforementioned 2D influence line (Hajdu et al. 2016).

Combining the individual snapshots in the same 
diagram is possible but becomes harder to read. Figure 4d 
shows such a dynamic set of snapshots for the activity as 
stacked layers. Varying only the activity duration but not 
its predecessor or successor is equivalent to a vertical cut 
as the red line in Figure 4d indicates. Viewing it as projec-
tions from the axis planes shows the two-way interaction 
of just varying predecessor or successor for different activ-
ity durations (i.e., layers).

This approach can theoretically be generalized toward 
multiple predecessors on one axis and multiple successors 
on another axis. The dominant ones will become visible in 
the 3D influence surface, and nondominant ones may be 
omitted. This may give a more faceted influence surface.

(a) (b)

(c) (d)

Time

Work

Time

Work

Fig. 4: Project duration for activity while varying predecessor and successor. (a) Activity duration = 1 day; (b) activity duration = 4 days;  
(c) predecessor and successor duration = 1 day–4 days; and (d) combined influence surfaces for activity duration = 1 day–16 days.
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7  �Contributions and 
recommendations

The contribution of this paper to the body of knowledge 
is threefold: First, a proof has been provided that no 
more than six known criticality constellations can exist 
for activities with linear progress that are linked only by 
end-point relations. The rare SF has been found to coun-
teract the formation of criticality constellations, because 
it bypasses activities. Second, more intricate criticality 
constellations exist for nonlinear continuous activi-
ties, because of their unique ability to induce mid-point 
relations and partial criticality in any activity pair with 
unequal curvature as shown in Figure 3f. This is also true 
for piecewise linearly segmented activities as shown in 
Figure 2g, which generate similar constellations, because 
their segments are bounded by slope changes. These 
findings do not contradict the conjecture, which had 
allowed “inner” points (Hajdu et al. 2016), i.e., mid-point 
relations, in referring to a previously published generali-
zation (Bokor and Hajdu 2015; Hajdu 2015c). Third, a gen-
eralization of influence lines toward influence surfaces 
presents a detailed visualization of how three activities 
can dynamically interact.

Categorizing their criticality constellations by their 
dominant link behavior is beyond the scope of this paper. 
If multiple different link types (point-to-point and continu-
ous) connect an activity pair, their criticality constellation 
could be classified by their dominant link but is hypothe-
sized to not introduce any new types. If nonlinear time and 
work buffers are allowed (as opposed to only nonlinear 
activities), they could then be superimposed onto the rel-
ative productivities of their host activity pairs and treated 
per their combined slopes in analogy to the known cases 
but are hypothesized to not introduce any new types. It is 
recommended to study these two new conjectures under 
future research. However, more constellations could arise 
if multiple crews are introduced as productive resources 
that alternate across individual work units, and individual 
workflows may be interruptible, which should be studied 
in more detail.

Further research is recommended to generalize this 
end-point and continuous analysis to links that connect 
points anywhere on activities (Hajdu 2015c) and also to 
consider both minimum and maximum constraints as 
lags on links (Hajdu 1997) for criticality, as well as their 
extension in linear schedules, where maximum con-
straints have just been introduced (Reis and Lucko 2016). 
The effects of partially critical activity segments on project 
duration should also be categorized.
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