Thermovision and spectroradiometry in stand-off detection of chemical contamination

Open access


The range of applications in which remote detection of chemical compounds is used extends from monitoring of technological processes through diagnostics of industrial installation and environmental control up to military applications. The methods and the devices used for the passive detection of selected gases are presented. The change in the signal reaching the camera caused by the presence of gas was calculated. The successful detection can be achieved if the absorption (or emission) of a gas cloud, located between object (background) and the camera, causes signal change greater or equal to noise equivalent temperature difference (NETD) of the camera.

GITTINS M., MARINELLI W. J. AND JENSEN J. O. 2001. Remote Sensing and Selective Detection of Chemical Vapor Plumes by LWIR Imaging Fabry-Perot Spectrometry, Proc. SPIE 4574, pp. 63-71.

KASTEK M., PIĄTKOWSKI T., DULSKI R., CHAMBERLAND M., LAGUEUX P., FARLEYV. 2012a. Hyperspectral Imaging Infrared Sensor Used for Chemical Agent Detection and Identification, Symposium Photonics and Optoelectronics (SOPO), Conference Guide, art. no. 6270545.

KASTEK M., PIĄTKOWSKI T., DULSKI R., CHAMBERLAND M., LAGUEUX P., FARLEYV. 2012b. Method of gas detection applied to an infrared hyperspectral sensor, Photonics Letter of Poland, vol. 4 (4) pp. 146-148.

KASTEK M., PIĄTKOWSKI T., POLAKOWSKI H. AND SOSNOWSKI T. 2008. Methane detection in far infrared using multispectral IR camera, 9th International Conference on Quantitative InfraRed Thermography, Kraków, pp 347-350.

KASTEK M., PIĄTKOWSKI T., POLAKOWSKI H. 2011a. Infrared imaging Fourier-transform spectrometer used for standoff gas detection, 19th International Conference on Modelling, Monitoring and Management of Air Pollution, WITPress, Southampton, Boston, UK, pp. 161-172.

KASTEK M., PIĄTKOWSKI T., TRZASKAWKA P. 2011b. Infrared imaging Fourier transform spectrometer as the stand–off gas detection systems, Metrology and Measurement Systems, Vol. XVIII, No. 4, pp. 607-620.

LAVOIE H., PUCKRIN E., THÉRIAULT J. M. AND DUBÉ D. 2007. Measurement of toxic industrial chemicals, chemical warfare agents and their simulants. A LWIR passive standoff detection study, Defence R&D Canada – Valcartier Technical Report, DRDCValcartier TR 2006-634.

MARINELLI W. J., GITTINS C. M., COSOFRET B. C., USTUN T. E. AND JENSEN J. O. 2005. Development of the AIRIS-WAD Multispectral Sensor for Airborne Standoff Chemical Agent and Toxic Industrial Chemical Detection, presented at Parallel Meetings of the MSS Specialty Groups on Passive Sensors; Camouflage, Concealment, and Deception; Detectors; and Materials (Charleston, SC).

SANDSTEN J., WEIBRING P., EDNER H. AND SVANBERG S. 2000. Real-time gas-correlation imaging employing thermal background radiation, Optics Express 92, Vol. 6, No. 4.

VALLIÈRES A., CHAMBERLAND M., FARLEY V., BELHUMEUR L., VILLEMAIRE A., GIROUX J. AND LEGAULT J. F. 2005. High-performance field-portable imaging radiometric spectrometer technology for chemical agent detection, Proc. SPIE 5590.

CHAMBERLAND, M., LAGUEUX, P., TREMBLAY, P., SAVARY, S., GAGNON, M.-A., KASTEK, M., PIATKOWSKI, T., DULSKI, R. 2014. Standoff gas detection, identification and quantification with a thermal hyperspectral imager, WIT Transactions on Ecology and the Environment, Volume 181, Pages 671-682.

Journal Information

CiteScore 2017: 0.26

SCImago Journal Rank (SJR) 2017: 0.137
Source Normalized Impact per Paper (SNIP) 2017: 0.211


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 12
PDF Downloads 95 95 9