Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress

Open access


The aim of this study is to determine the effect of both NaCl and KCl alone and in comparison to AsA on the morphological and some biochemical parameters of Oxheart and Vilma cultivars of tomato under laboratory and field conditions. A combination of salt applied in the laboratory experiment caused a significant effect on seed germination and root and shoot length and a significant reduction of Chl a, Chl b and Car contents in 14-day-old tomato seedlings. However, seedlings of cultivar Vilma were characterised by higher tolerance to applied salt stress.

NaCl caused a significant decrease in Chl a, Chl b and Car, and an increase in Pro and MDA content in the leaves of Vilma cultivar under field conditions. Besides, tomato plants cv. Vilma treated with NaCl alone or NaCl with ascorbic acid developed longer roots, from 48 to 73%, compared to the control.

AGAMI R.A. 2014. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biologia Plantarum, 58, 2: 341-347.

ASHRAF M., KARIM F., RASUL E. 2002. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulators, 36, 1: 49-59.

ASLAN R., BOSTAN N., AMEN N., MARIA M., SAFDAR W. 2011. A critical review on halophytes: salt tolerant plants. Journal of Medicinal Plant Research, 5: 7108-7118.

ARNON D.J., ALLEN M.B., WHATLEY F. 1956. Photosynteis by isolated chloroplast. Biochimica and Biophysica Acta, 20: 449-461.

BATES L. S. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.

BYBORDI A. 2012. Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in Canola exposure to salt stress. Journal of Integrative Agriculture, 11, 10: 1610-1620.

CUARTERO J., FERNANDEZ-MUÑOZ R. 1999. Tomato and salinity. Scientia Horticulturae, 78: 83-125.

CUARTERO J., BOLARIN M.C., ASINS M.J., MORENO V. 2006. Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57,5: 1045-1058.

DEMIR Y., KOCAÇALIŞKAN I. 2002. Effect of NaCl and proline on bean seedlings cultured in vitro. Biologia Plantarum, 45, 4: 597-599.

GOEL D., SINGH A.K., YADAV V., BABBAR S.B. 2010. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenetic tomato (Solanum lycopersicum L.). Protoplasma, 245, 1-4: 133-141.

HENDRY G.A.F., GRIME J.P. 1993. Methods in comparative plant ecology. Marcel Dekker, New York, pp.282.

JONES R.A. 1986. High salt tolerance potential in Lycopersicon species during germination. Euphytica, 35: 575-582.

KHAN T.A., MAZID M., MOHAMMAD F. 2011. A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of Agrobiology, 28, 2: 97-111.

KRUPA-MAŁKIEWICZ M., FRANCZAK M., GRABIEC M., SMOLIK B., SMOLIK M. 2014. Genotypic differences between tomato cultivars differing in their response to salinity stress. Folia Pomeranae Universitatis Technologiae Stetinensis, 309, 29: 75-84.

LICHTENTHALER H.K., WELLBURN A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.

PRICE A.H., HENDRY G.A.F. 1991. Ion-catalyzed oxygen radical formation and its possible contribution to drought damages in nine native grasses and three cereals. Plant Cell Environment, 14: 477-484.

RAHNAMA H., EBRAHIMZADEH H. 2004. The effect of NaCl on proline accumulation in potato seedlings and calli. Acta Physiologiae Plantarum, 26,3: 263-270.

RZEPKA-PLEVNEŠ D., KULPA D., SMOLIK M., GŁÓWKA M. 2007. Somaclonal variation in tomato L. pennelli and L. peruvianum f. glandulosum characterized in respect to salt tolerance. Journal of Food, Agriculture & Environment, 5, 2: 194-201.

RZEPKA-PLEVNEŠ D., KRUPA-MAŁKIEWICZ M., TWARDOWSKA M., KUREK J., WYBORSKA K. 2008. Variability of rye varieties and breeding strains tested for tolerance to drought in in vitro cultures. Journal of Food, Agriculture & Environment, 6, 2: 265-271.

SAEIDI-SAR S., ABBASPOUR H., AFSHARI H., YAGHOOBI S.R. 2013. Effects of ascorbic acid and gibberellin GA3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologiae Plantarum, 35: 667-677.

SAJID Z.A., AFTABLE F. 2009. Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous applicatiob of ascorbic acid. In Vitro Cellular & Developmental Biology-Plant, 45: 540-549.

SMIRNOFF N., WHEELER G.L. 2000. Ascorbic acid in plants: biosynthesis and function. CRC Crit. Rev. Plant Science, 19: 267-290.

SMOLIK M., KRAM P., KRUPA-MAŁKIEWICZ M., SMOLIK B., MALINOWSKA K. 2011. Response of tomato genotypes to sainity stress assessed at the seedlings stage. Electronic Journal of Polish Agricultural Universities, 14, 4: #17.

SMOLIK B., MIŚKOWIEC A., REKOWSKA E., ZAKRZEWSKA H., ŚNIOSZEK M. 2013. The influence of particular biostimulators on some biochemical parameters in broccoli (Brassica oleracea L. var. Botrytis italica Plenck). Environmental Protection and Natural Resources, 24, 3: 25-27.

SUDHAKAR C., LAKSHIM A., GIRIDARAKUMAR S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613-619.

YAMADA M., MORISHITA H., URANO K., SHIOZAKI N., YAMAGUCHI-SHINOZAKI K., SHINOZAKI K., YOSHIBA Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 417: 1975-1981.

Journal Information

CiteScore 2017: 0.26

SCImago Journal Rank (SJR) 2017: 0.137
Source Normalized Impact per Paper (SNIP) 2017: 0.211


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 279 29
PDF Downloads 160 160 18