The Antidepressants and the Metabolic Syndrome

Open access


The relationship between antidepressants (AD) and metabolic syndrome (MS) can be approached from many perspectives. We can start from the mutuality of depression and MS: depression often causes MS and vice versa; however, the two diseases aggravate each other. Altered glucocorticoid secretion - among others - may be a common etiological factor for depression and MS. Enhanced glucocorticoid production leads both to sleep disorders and insulin resistance, and several antidepressants cause obesity and insulin resistance. In addition, sympathetic nervous system activity increases in depression, together with the elevated production of counter-insulin hormones such as catecholamines (adrenaline) and glucocorticoids. From the components of MS, body weight changes can be most easily followed by the patient. The obesogenic mechanisms of AD drugs are different. The H1-receptor blocking agents have the most important weight gaining effect, followed by the 5-HT2c-receptor blocking and/or down-regulating ADs. The fattening effect of mirtazapine, paroxetine, and tricyclic antidepressants are based on such central mechanisms. Blocking of alpha1-receptors contributes to the obesogenic effects of certain drugs by inducing sedation: this has been confirmed in case of imipramine, amitriptyline, and doxepin. Fluoxetine behaves differently depending on the dose and duration of treatment: while at the usual doses it induces weight loss at the beginning of therapy, its initial anorexigenic effects reverses during prolonged use; while its activation effect at high doses is favorable in bulimia. The selective noradrenaline reuptake inhibitor reboxetine reduces appetite, similarly to bupropion, which inhibits dopamine reuptake as well. We highlight the effect of fluoxetine on direct adipogenicity, mentioning its preadipocyteadipocyte transformation-reducing and adipocyte proliferation-inhibiting activity, as well as its ability to enhance fat cell autophagy.

1. Kucerova J, Babinska Z, Horska K, Kotolova H. The common pathophysiology underlying the metabolic syndrome, schizophrenia and depression. A review. Biomed. Pap. Med. Fac. Univ. Palacký, Olomouc, Czechoslov. 2015;159:208–14.

2. Barnard K, Peveler RC, Holt RIG. Antidepressant medication as a risk factor for type 2 diabetes and impaired glucose regulation. Diabetes Care. 2013;36:3337–45.

3. Olguner Eker O, Ozsoy S, Eker B, Dogan H. Metabolic Effects of Antidepressant Treatment. Noro Psikiyatr. Ars. 2017;54:49–56.

4. Corruble E, El Asmar K, Trabado S, Verstuyft C, Falissard B, Colle R, et al. Treating major depressive episodes with antidepressants can induce or worsen metabolic syndrome: Results of the METADAP cohort. World Psychiatry. 2015;14:366–7.

5. Anacker C, Zunszain P, Cattaneo A, Carvalho L, Garabedian M, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol. Psychiatry. 2011;16:738–50.

6. Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment? Eur. PMC. 2012;36:415–25.

7. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017;27:554–9.

8. Kun IZ, Szántó Z. Mi változott a metabolikus szindróma értelmezésében, diagnózisában és kórtanában az utóbbi huszonöt évben ? Orvostudományi Értesítő. 2013;88:53–68.

9. Kun IZ, Szántó Z, Kun I, Kolcsár M. Konvencionális és atípusos antipszichotikumok okozta metabolikus szindróma. Orvostudományi Értesítő. 2017;90:7–18.

10. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and Cancer: A Consensus Report. CA. Cancer J. Clin. 2010;60:207–21.

11. Halmos T, Suba I. Type 2 diabetes and metabolic syndrome as conditions leading to malignant tumors. Orv. Hetil. 2008;149:2403–11.

12. Kékes E, Kiss I. A metabolikus szindróma értelmezése. Hypertonia és Nephrol. 2012;16:193–9.

13. Pierotti M, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. Nature Publishing Group; 2012;32:1475–87.

14. Kun IZ, Kun I, Kun IZJ. Metabolikus szindróma, diabetes mellitus és a rosszindulatú daganatok. Orvostudományi Értesítő. 2015;88:7–18.

15. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry. 2010;71:1259–72.

16. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS One. 2014;9:e94112.

17. Neal MJ (ford. Laszlovszky István). Rövid farmakológia. B+V Lapés Könyvkiadó Kft; 2000; 62-63.

18. Magyar K, Bagdy G, Szökő É, Juhász G. Antidepresszív és antimániás vegyületek. In: Gyires K, Fürst Z, Ferdinándy P, editors. Farmakológia és klinikai farmakológia. Medicina, Budapest; 2017. p. 457–66.

19. Salvi V, Mencacci C, Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur. Neuropsychopharmacol. Elsevier; 2016;26:1673–7.

20. Hinze-Selch D, Schuld A, Kraus T, Kühn M, Uhr M, Haack M, et al. Effects of antidepressants on weight and on the plasma levels of leptin, TNF-alpha and soluble TNF receptors: A longitudinal study in patients treated with amitriptyline or paroxetine. Neuropsychopharmacology. 2000;23:13–9.

21. Berilgen MS, Bulut S, Gonen M, Tekatas A, Dag E, Mungen B. Comparison of the effects of amitriptyline and flunarizine on weight gain and serum leptin, C peptide and insulin levels when used as migraine preventive treatment. Cephalalgia. 2005;25:1048–53.

22. Ruetsch O, Viala A, Bardou H, Martin P, Vacheron MN. [Psychotropic drugs induced weight gain: a review of the literature concerning epidemiological data, mechanisms and management]. Encephale. 31:507–16.

23. Chokka P, Tancer M, Yeragani VK. Metabolic syndrome: relevance to antidepressant treatment. J. Psychiatry Neurosci. 2006;31:414.

24. Orzack MH, Friedman LM, Marby DW. Weight changes on fluoxetine as a function of baseline weight in depressed outpatients. Psychopharmacol. Bull. 1990;26:327–30.

25. McIntyre RS, Park KY, Law CWY, Sultan F, Adams A, Lourenco MT, et al. The association between conventional antidepressants and the metabolic syndrome: A review of the evidence and clinical implications. CNS Drugs. 2010;24:741–53.

26. Wolkowitz OM, Burke H, Epel ES, Reus VI. Glucocorticoids: Mood, memory, and mechanisms. Ann. N. Y. Acad. Sci. 2009;1179:19–40.

27. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Investig. Med. 2007;30Sauvé, B:183–92.

28. Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. Elsevier Ltd; 2012;37:589–601.

29. Staufenbiel SM, Penninx BWJH, Spijker AT, Elzinga BM, van Rossum EFC. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology. 2013;8:1220-35.

30. Wester VL, Staufenbiel SM, Veldhorst MAB, Visser JA, Manenschijn L, Koper JW, et al. Long-term cortisol levels measured in scalp hair of obese patients. Obesity. 2014;22:1956–8.

31. Kecskeméti V. Antipszichotikus hatású gyógyszerek kardiális mellékhatásai: ritmuszavarok és a hirtelen szívhalál hatásmechanizmusa. Neuropsychopharmacol. Hungarica. 2004;VI:5–12.

32. Raeder MB, Bjelland I, Emil Vollset S, Steen VM. Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J. Clin. Psychiatry. 2006;67:1974–82.

33. Michelson D, Amsterdam JD, Quitkin FM, Reimherr FW, Rosenbaum JF, Zajecka J, et al. Changes in weight during a 1-year trial of fluoxetine. Am. J. Psychiatry. 1999;156:1170–6.

34. Afkhami-Ardekani M, Sedghi H. Effect of fluoxetine on weight reduction in obese patients. Indian J. Clin. Biochem. 2005;20:135–8.

35. Beyazyüz M, Albayrak Y, Eğilmez OB, Albayrak N, Beyazyüz E. Relationship between SSRIs and Metabolic Syndrome Abnormalities in Patients with Generalized Anxiety Disorder: A Prospective Study. Psychiatry Investig. 2013;10:148–54.

36. Blumenthal SR, Castro VM, Clements CC, Rosenfield HR, Murphy SN, Fava M, et al. An electronic health records study of long-term weight gain following antidepressant use. JAMA psychiatry. 2014;71:889–96.

37. Schatzberg F., DeBattista C. Manual of Clinical Psychopharmacology. Eight Edit. Washington, DC, London: American Psychiatric Publishing; 2015.

38. Stahl S. Stahl’s Essential Psychopharmacology. Forth Edit. Cambridge University Press; 2013; 284-346.

39. Kahl KG, Westhoff-Bleck M, Krüger THC. Effects of psychopharmacological treatment with antidepressants on the vascular system. Vascul. Pharmacol. 2017;96–98:11–8.

40. Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol. Ther. Pergamon; 2015;145:43–57.

41. Baldwin DS, Chrones L, Florea I, Nielsen R, Nomikos GG, Palo W, et al. The safety and tolerability of vortioxetine: Analysis of data from randomized placebo-controlled trials and open-label extension studies. J. Psychopharmacol. SAGE PublicationsSage UK: London, England; 2016;30:242–52.

42. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinival Practice Guidelines for Medical Care of Patients with Obesity. Endocr. Pract. 2016;22:1–203.

43. Malhotra S, King KH, Welge JA, Brusman-Lovins L, McElroy SL. Venlafaxine treatment of binge-eating disorder associated with obesity: a series of 35 patients. J. Clin. Psychiatry. 2002;63:802–6.

44. Imre A, Kolcsár M, Groşan A, Imre M, Dogaru TM. Metabolic Effects of Two Different Doses of Venlafaxine Therapy on Rats. Acta Medica Marisiensis. 2015;61:196–9.

45. Gadde KM, Parker CB, Maner LG, Wagner HR, Logue EJ, Drezner MK, et al. Bupropion for weight loss: an investigation of efficacy and tolerability in overweight and obese women. Obes. Res. 2001;9:544–51.

46. Gadde KM, Yonish GM, Foust MS, Wagner HR. Combination therapy of zonisamide and bupropion for weight reduction in obese women: a preliminary, randomized, open-label study. J. Clin. Psychiatry. 2007;68:1226–9.

47. Plodkowski RA, Nguyen Q, Sundaram U, Nguyen L, Chau DL, St Jeor S. Bupropion and naltrexone: a review of their use individually and in combination for the treatment of obesity. Expert Opin. Pharmacother. Taylor & Francis; 2009;10:1069–81.

48. Greenway FL, Dunayevich E, Tollefson G, Erickson J, Guttadauria M, Fujioka K, et al. Comparison of Combined Bupropion and Naltrexone Therapy for Obesity with Monotherapy and Placebo. J. Clin. Endocrinol. Metab. 2009;94:4898–906.

49. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity. 2013;21:935–43.

50. Guerdjikova AI, Walsh B, Shan K, Halseth AE, Dunayevich E, McElroy SL. Concurrent Improvement in Both Binge Eating and Depressive Symptoms with Naltrexone/Bupropion Therapy in Overweight or Obese Subjects with Major Depressive Disorder in an Open-Label, Uncontrolled Study. Adv. Ther. 2017;34:2307–15.

51. Mangoni AA, Lu TY-T, Kupa A, Easterbrook G. Profound weight loss associated with reboxetine use in a 44-year-old woman. Br J Clin Pharmacol. 602:218–20.

52. Hasnain M, Vieweg WVR, Fredrickson SK, Beatty-Brooks M, Fernandez A, Pandurangi AK. Clinical monitoring and management of the metabolic syndrome in patients receiving atypical antipsychotic medications. Prim. Care Diabetes. 2009;3:5–15.

53. Coccurello R, Moles A. Potential mechanisms of atypical antipsychotic-induced metabolic derangement: Clues for understanding obesity and novel drug design. Pharmacol. Ther. 2010;127:210–51.

54. Ghanizadeh A. A systematic review of reboxetine for treating patients with attention deficit hyperactivity disorder. Nord. J. Psychiatry. 2015;69:241–8.

55. Wofford MR, King DS, Harrell TK. Drug-Induced Metabolic Syndrome. J. Clin. Hypertens. 2006;8:114–9.

56. Uguz F, Sahingoz M, Gungor B, Aksoy F, Askin R. Weight gain and associated factors in patients using newer antidepressant drugs. Gen. Hosp. Psychiatry. Elsevier; 2015;37:46–8.

57. Demyttenaere K. Agomelatine: A narrative review. Eur. Neuropsychopharmacol. Elsevier; 2011;21:S703–9.

58. Nowacka MM, Paul-Samojedny M, Bielecka AM, Obuchowicz E. Chronic social instability stress enhances vulnerability of BDNF response to LPS in the limbic structures of female rats: A protective role of antidepressants. Neurosci. Res. Elsevier; 2014;88:74–83.

59. McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, et al. The neurobiological properties of tianeptine (Stablon): From monoamine hypothesis to glutamatergic modulation. Mol. Psychiatry. Nature Publishing Group; 2010;15:237–49.

60. Kozumplik O, Uzun S. Metabolic syndrome in patients with depressive disorder--features of comorbidity. Psychiatr. Danub. 2011;23:84–8.

61. Kahl KG, Schweiger U, Correll C, Müller C, Busch ML, Bauer M, et al. Depression, anxiety disorders, and metabolic syndrome in a population at risk for type 2 diabetes mellitus. Brain Behav. 2015;5:e00306.

62. Mendelson SD. Depression, Metabolic Syndrome, and Heart Disease. Metab. Syndr. Psychiatr. Illn. Elsevier; 2008. p. 93–103.

63. Gheshlagh RG, Parizad N, Sayehmiri K. The Relationship Between Depression and Metabolic Syndrome: Systematic Review and Meta- Analysis Study. 2016;18.

64. Sun BK, Kim JH, Choi J-S, Hwang S-J, Sung J-H. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells. Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute (MDPI); 2015;16:16655–68.

65. Cloonan SM, Williams DC. The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug-resistant Burkitt’s lymphoma. Int. J. Cancer. 2011;128:1712–23.

66. Li H, Fong CC, Chen Y, Cai G, Yang M. Imipramine inhibits adipogenic differentiation in both 3T3-L1 preadipocytes and mouse marrow stromal cells. J Genet Genomics. Elsevier Limited and Science Press; 2012;39:173–80.

67. Lowell BB. PPAR??: An essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999;99:239–42.

68. Bertile F, Criscuolo F, Oudart H, Maho Y Le. Differences in the expression of lipolytic-related genes in rat white adipose tissues. Biocehmical Biophys. Res. Commun. 2003;307:540–6.

69. Löffler D, Landgraf K, Körner A, Kratzsch J, Kirkby KC, Himmerich H. Modulation of triglyceride accumulation in adipocytes by psychopharmacological agents in vitro. J. Psychiatr. Res. 2016;72:37–42.

70. Stunes AK, Reseland JE, Hauso Ø, Kidd M, Tømmerås K, Waldum HL, et al. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes, Obes. Metab. Blackwell Publishing Ltd; 2011;13:551–8.

71. Grès S, Canteiro S, Mercader J, Carpéné C. Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol. Nutr. Food Res. 2013;57:1089–99.

72. Grès S, Gomez-Zorita S, Gomez-Ruiz A, Carpéné C. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation. J. Neural Transm. Springer Vienna; 2013;120:919–26.

73. Bába LI, Gáll Z, Bíró IL, Mezei T, Kun IZ, Kolcsár M. Chronic fluoxetine treatment induces lipid accumulation but does not alter the expression of Pref-1 in rat adipose tissue. Acta Pharm. 2018;68:109–15.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 185 15
PDF Downloads 165 165 26