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Abstract This paper is the third part of our bird ringing data analysis series (Harnos et al.

2015a, 2016a) in which we continue to focus on exploring data using the R statistical
environment. Here, we give a short description of missing data patterns, then handling and visualization
techniques that help simultaneously explore the data and the structure of missing values. We try to
emphasize that missing data can seriously distort the results of the analyses, therefore the conclusions
drawn.
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Összefoglalás Sorozatunk harmadik részében folytatjuk a madárgyűrűzési adatok kezelését, elemzését
az R statisztikai program használatával (Harnos et al. 2015a, 2016a). Röviden bemutatunk hiányzó adat
mintázatokat, kezelésüket és azt, hogy hogyan lehet a meglévő adatokat és a hiányzó adatok struktúráját
szimultán feltárni különböző ábrázolási módszerekkel. Egyúttal szeretnénk felhívni a figyelmet arra,
hogy a hiányzó adatok komoly mértékben torzíthatják az elemzések eredményeit és a belőlük levont
következtetéseket.
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Introduction

This paper is the third part of our bird ringing data analyses series (Harnos et al. 2015a,
2016a) in which we focus on exploring missing data structures. We will give a short
description of problems caused by missing data, and how they can bias basic descriptive
statistics and explain how to generate and read useful figures to explore missing data
patterns.

Our template dataset is of Pied Flycatchers trapped and ringed at the Ócsa Bird Ringing
Station (Central Hungary) between 1984–2014 (for details see Harnos et al. 2015b, Csörgő
et al. 2016, Harnos et al. 2016b). The dataset is available through our ringR (ringr.
gryllosoft.hu) R package or from the online appendix of this paper along with the R codes
(OrnisHungarica_vol25(2)_p141-156_appendix.zip). We used the R 3.4.1 program (R

ringr.gryllosoft.hu
ringr.gryllosoft.hu
http://ornis.hu/articles/OrnisHungarica_vol25(2)_p141-156_appendix.zip
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Core Team 2017), the VIM (Kowarik & Templ 2016), the RcmdrMisc (Fox 2017), the
knitr (Xie 2014, 2015, 2016) and the xtable (Dahl 2016) R packages for the analyses
and dynamic latex code generation, Tex Live, RStudio 1.0.136, Texmaker 4.4.1. for editing
the R and LATEX scripts on the Ubuntu 14.04 platform.

Missing values are omnipresent in observational studies, including avian ringing datasets.
In general, missing data are observations (e.g. morphometric measurements) that were
intended to be made but for some reason were not. Missing values in a variable may arise
independently of all the measured variables occurring in a purely haphazard fashion
(MCAR: missing completely at random), or may be dependent on the observed or
unobserved values of them. (For more detailed explanation see e.g. Carpenter & Kenward
2012, Little 2016.) For instance, consider a ringer who decides to neglect body mass
measurements for individuals with brood patches, in order to reduce handling time for
potentially incubating individuals. In this case missing values will depend on a binary
variable ’brood patch presence’. The same ”soft-hearted” ringer may also decide to
drastically reduce handling time for individuals in apparently bad physical condition
by skipping all morphometric measurements, including body mass. In this case, missing
values in body mass will directly depend on the value of body mass. Using appropriate
visualization techniques, the pattern of missingness and the relations of missing and
non-missing data can be explored (Templ et al. 2012, Kowarik & Templ 2016).

Effect of missing values on basic descriptive statistics

To demonstrate the potential distorting effects of missing values we created several
versions of the same variable (WING) excluding data from each with different models
(WING.table.csv, the table and the codes generating the descriptive statistics are
available in the online appendix). Initially, we randomly selected 200 individuals from the
complete Pied Flycatcher dataset (All) with existing wing measurements and determined
sex. We then assigned NAs to random 10% (Rand10), to random 30% (Rand30), to
random 50% (Rand50) of the values, to random 50% of females (RandF50) and to
random 30% males and 10% to females (RandF10M30) and to values below the 10%
(Lower10) and above the 90% (Upper10) quantiles in the dataset. (Note that male wing
length is significantly longer compared to females, see Harnos et al. 2015b.) We then
calculated several descriptive statistics (mean, mean by sex (MeanF, MeanM), standard
deviation (SD), median, minimum, maximum, number of non-missing values (N) and
number of missing values (NA)) by omitting missing values for these variables (Table1).

It is clear that randomly generated missing values hardly distort our sample estimates,
except for Rand50, where the shear random reduction of sample size is causing the
approximately 0.3 mm mean difference. If missingness depends on the variable itself
(Lower10 and Upper10), the effect is apparent and substantial on all descriptives except
the median and the opposite extreme value despite the relatively low number of introduced
missing values. Sex dependent missingness (RandF50 and RandF10M50) also had a
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Table 1. Numerical summaries of the WING.table (see text for explanations)

1. táblázat A WING.table táblázat leíró statisztikái

Variable Mean MeanF MeanM SD Median Min. Max. N NA

All 80.03 79.41 80.45 1.75 76 80 85 200 0

Rand10 80.03 79.43 80.45 1.73 76 80 85 180 20

Rand30 80.12 79.33 80.57 1.85 76 80 85 140 60

Rand50 80.30 79.76 80.68 1.65 77 80 85 100 100

RandF50 80.26 79.65 80.45 1.78 76 80 85 156 44

RandF10M50 79.78 79.34 80.28 1.67 76 80 83 137 63

Lower10 80.65 80.21 80.89 1.36 79 80 85 160 40

Upper10 79.40 79.09 79.64 1.30 76 80 81 159 41

sizeable impact on mean wing estimates, increasing it by 0.23 mm and decreasing it by
0.25 mm, respectively. In this case the mean estimates by sex groups are unbiased, the
relatively large differences are caused by the high number of missing values. The mean
estimate of the females, if only 10% of the values are missing (RandF10M50, MeanF =
79.34), is close to the mean of the females without missingness (All, MeanF = 79.41).

This little example (Table1) highlights the importance to understand the pattern of
missing values to allow a more informed inference of results. However, this is not an easy
task, and first of all needs a thorough knowledge on the precise details of data collection
methodology. The nature of avian ringing datasets (i.e. spatial and temporal range, multiple
participants) makes the evaluation of missing data patterns even more difficult, therefore
we urge our readers to allocate extra time and energy in identifying the patterns and the
underlying mechanisms.

Managing missing data

Three major approaches exist to deal with missing data: 1. to discard incomplete cases
listwise (i.e. delete full rows from the data table; complete-case analysis) or pairwise (for
each pair of variables for which data is available, the specific analysis will take that data
into account) and analyse the remainder; 2. to impute (i.e. substitute using known data) the
missing values and then analyse the filled-in data and 3. to analyse the incomplete data by
a method that does not require a complete data table (Enders 2010, Little 2016).

In certain cases, deletion of incomplete cases listwise or pairwise can be a viable solution
(i.e. producing unbiased estimates), but both requires MCAR data. Imputing requires
deep statistical knowledge and may cause more harm than good in the wrong hands
(Schafer & Graham 2002), thus we encourage our readers to consult a statistician. A good
starting point may be the book of Enders (2010) which offers a good overview of imputing
techniques, their usability and drawbacks. However, please note that once a data point is
missing, the loss in information can not be substituted with statistical methods.
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Importing data with missing values

In theory, missing values can be denoted arbitrarily, most commonly with character strings
such as NA, na, null or with special characters like '_', '-'. They may also be
represented with values outside the range of the given variable like -9999 or with 0 in
case of morphometrics. This potential variability of missing value representations is a
major source of error and can have detrimental effects on our sample estimates (think of
calculating mean wing length where missing values are marked with a 0). Furthermore,
it is not uncommon to use multiple representations within the same dataset, depending
on the variable. Prior to all analyses, one of our primary tasks is to understand and note
how our missing values are denoted in each variable. We suggest to fix the missing data
representation before data collection, if it is possible.

By default, only blanks and NAs are read as missing values in R. In case of other
representations, the na.strings argument of the read.table() (and sibling func-
tions e.g. read.csv()) should be specified appropriately. In our case, the lack of
recorded sex of certain individuals was indicated with "N". If this sole letter is not used in
other variables, we can import the data table giving "N" (besides "null") as a missing
value string . First import the FICHYP.csv raw dataset, then summarise the SEX variable,
then repeat it using the extended na.strings argument:

> mydata.raw = read.table("FICHYP.csv", sep=";", header=T,

na.strings = "null")

> summary(mydata.raw$SEX)

F M N NA's

647 948 39 362

> mydata.raw2 = read.table("FICHYP.csv", sep=";",header=T,

+ na.strings = c("null", "N"))

> summary(mydata.raw2$SEX)

F M NA's

647 948 401

Note that the number of NAs in the second case equals the sum of NAs and Ns in the
previous case.

Recoding values as missing

It is also possible to recode values to NAs after importing (see Harnos et al. 2015a) using
the ifelse() function.

> mydata.raw$SEX = ifelse(test = mydata$SEX == "N",

yes = NA,

no = as.character(mydata$SEX))
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Another possibility is to directly substitute given values to NA. In the example below, we
recode the values "FEJ" (developed bird with undetermined age) of the AGE variable to
NA and then we check the result.

> mydata$AGE[mydata$AGE == "FEJ"] = NA

> summary(mydata$AGE)

1 1+ 1Y 2 2+ 2Y FEJ NA's

7 40 1614 31 3 251 0 20

Although we successfully recoded "FEJ" to NA, the AGE factor still retains the level
"FEJ". The droplevels() and the factor() functions drop unused factor levels.
The main difference between the two is while droplevels() can be applied to the
whole dataset, the factor() function can be applied to only a single variable.

> mydata$AGE = droplevels(mydata$AGE)

> summary(mydata$AGE)

1 1+ 1Y 2 2+ 2Y NA's

7 40 1614 31 3 251 20

Locating and counting missing values

Once we recoded missing values to NA we have a decent selection of tools to locate them
in the dataset. We illustrate how these work on a small sample vector called x containing
10 Pied Flycatcher wing length measurements with 3 missing values.

> x = c(81, NA, 79, 82, 83, NA, 77, 81, NA, 80)

> anyNA(x)

[1] TRUE

> is.na(x)

[1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

> sum(is.na(x))

[1] 3

The anyNA() function returns TRUE if there are any missing value in the object,
otherwise it returns FALSE. One of the most versatile functions is the is.na() function,
which in our case returns a logical vector with the position of TRUE values indicating NAs.
The sum of a logical vector returns the number of TRUE values, allowing for a quick count
of missing values.

Combining is.na() with the which() function returns the index of missing values,
or by using the NOT (negation) logical operator "!", we can get the index of non-missing
values.

> which(is.na(x))

[1] 2 6 9

> which(!is.na(x))

[1] 1 3 4 5 7 8 10



146 ORNIS HUNGARICA 2017. 25(2)

The summary() function applied on a data frame also calculates the number of NAs in
the last rows of the individual variables. First, we import the FICHYP1.csv dataset, than
we make a subset data table called mydata2 containing only 5 variables. Then, using the
summary() function, we can get a quick overview of missing data frequencies.

> mydata = read.table("FICHYP1.csv", sep=";",header=T)

> mydata2 = mydata[, c("SEX", "WING", "THIRD", "MASS", "AGE")]

> summary(mydata2)

SEX WING THIRD MASS AGE

F :622 Min. :70.0 Min. :53.00 Min. : 9.20 1+ : 40

M :943 1st Qu.:79.0 1st Qu.:60.00 1st Qu.:11.90 1Y :1621

NA's:401 Median :80.0 Median :61.00 Median :12.50 2+ : 3

Mean :79.9 Mean :61.04 Mean :12.62 2Y : 282

3rd Qu.:81.0 3rd Qu.:62.00 3rd Qu.:13.20 NA's: 20

Max. :89.0 Max. :69.00 Max. :19.60

NA's :290 NA's :319 NA's :80

A more complex approach yielding similar results is to combine the sapply() function
with the wrapped sum(is.na()) trick seen above.

> sapply(mydata2, function(x)(sum(is.na(x))))

SEX WING THIRD MASS AGE

401 290 319 80 20

The function complete.cases() returns a logical vector indicating which cases
are complete. We apply it to the last 10 rows of the mydata2 dataset using the tail()
function.

> mydata2.last10 = tail(mydata2,10)

> complete.cases(mydata2.last10)

[1] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE

Using the above function, we can get a dataset containing only the complete cases. (Note
that the na.omit() function returns the same result.)

> mydata2.last10[complete.cases(mydata2.last10),]

SEX WING THIRD MASS AGE

1958 M 79 62 12.4 1Y

1959 F 79 61 11.6 1+

1960 F 82 63 12.5 1+

1964 M 82 62 13.2 1+

1965 M 81 61 13.9 1Y

1966 F 82 63 11.4 1Y

Or we can get the rows containing missing values by negating the expression with "!".

> mydata2.last10[!complete.cases(mydata2.last10),]

SEX WING THIRD MASS AGE

1957 M NA NA 12.9 1Y

1961 <NA> 79 59 11.2 1Y

1962 <NA> 85 64 13.0 1+

1963 <NA> 82 62 13.3 1+



A. Harnos, T. Csörgő, & P. Fehérvári 147

Certain arithmetic and descriptive functions (e.g. sum(), sd()) return NA when the
focal object contains missing values. Using the generic na.rm = TRUE parameter may
remove missing values in case of the specific function, however, we recommend to always
refer to the help page of the function for details.

> mean(x)

[1] NA

> mean(x, na.rm = TRUE)

[1] 80.42857

Visualization of missing values

In this section, we introduce the reader to how the data and the structure of missing values
can be explored simultaneously with useful plots of the VIM package (Kowarik & Templ
2016). We will use the FICHYP1.csv dataset (mydata), and its subset mydata2,
and the previously used WING.table containing differently structured missing values
(Table1).

Aggregation Plot

The highly customizable aggr() (see the help page) function produces a barplot and
an aggregation plot. The barplot on the left of Figure 1 shows a bar for each considered
variable describing the frequencies of missing values (alternatively, the proportion can be
shown using the prop = T (default) parameter). The aggregation plot on the right hand
side shows all different missing value combinations horizontally that are present in the
observations for the same variables. The grey colour indicates missingness, the white colour
represents available data. (Default colours are red and light blue). The horizontal barplot to
the right describes the frequencies of observations to the corresponding combinations. The
proportion or frequencies of the different combinations can be represented by numbers by
using the number = T parameter setting.

The first row from the bottom shows the most frequent combination (complete cases)
that has the highest frequency (1281 observations). The second row shows the second most
common combination (only SEX is missing). Adult Pied Flycatchers in general can be
sexed with high certainty in all seasons, while juveniles in autumn can only be sexed after
they initiate their postjuvenile moult. This relatively high number of missing values for
SEX (287 cases) may be a result of trapped unmoulted juveniles. The third row shows that
174 observations are missing in both WING and THIRD. A potential explanation may be
that ringers decided not to measure wing and third primary lengths due to high level of
abrasion or active moult. We will further explore these patterns below.

> library(VIM)

> aggr(mydata2, col = c("white", "grey"), prop = F, numbers = T)
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Figure 1. Barplot and aggregation plot. Grey colour indicates missing, white colour represents

available data

1. ábra Oszlopdiagram és kombinációs ábra. A szürke a hiányzó, a fehér a meglévő adatokat

jelöli

With summary(aggr(mydata2)), summaries of the above graphs can be printed out.

> summary(aggr(mydata2))

Missings per variable:

Variable Count

SEX 401

WING 290

THIRD 319

MASS 80

AGE 0

Missings in combinations of variables:

Combinations Count Percent

0:0:0:0:0 1284 65.3102747

0:0:0:1:0 45 2.2889115

0:0:1:0:0 29 1.4750763

0:1:0:0:0 10 0.5086470

0:1:1:0:0 178 9.0539166

0:1:1:1:0 19 0.9664293

1:0:0:0:0 294 14.9542218

1:0:0:1:0 11 0.5595117

1:0:1:0:0 13 0.6612411

1:1:0:0:0 3 0.1525941

1:1:1:0:0 75 3.8148525

1:1:1:1:0 5 0.2543235



A. Harnos, T. Csörgő, & P. Fehérvári 149
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Figure 2. Barplot and spineplot for the year variable. Grey colour indicates missing, white

colour represents available data in SEX

2. ábra Oszlopdiagram és spineplot a year változóra. A szürke a hiányzó, a fehér a meglévő

adatokat jelöli a SEX változóban

Barplot/histogram and spineplot/spinogram with information on missing values

We can also make barplots (Figure 2 a, 3 a) and spineplots in case of categorical (Figure

2 b, 3 b) or histograms (Figure 4 a, 4 c) and spinograms (Figure 4 b, 4 d) in case of
numerical variables with highlighting of missing values in other variables by splitting each
bar into two parts. For spineplots (Figure 2 b, 3 b) and spinograms (Figure 4 b, 4 d) the
width of the horizontal bars is scaled according to relative frequencies of the categories
and the proportion of missing to the observed values are shown on the vertical axes (grey
rectangles). Using the only.miss = F parameter setting, two additional barplots at the
right appear on the plot. The first shows the number/ratio of missing values of the variable
of interest (Figure 2, 3), the second one has meaning only in case of having imputed values.
In case of only.miss = T (default) setting, only the missing values in the variable of
interest are visualized.

Let us further explore the patterns of missing values in the SEX variable, by evaluating
inter-annual proportions of NAs relative to the total number of ringed birds.

> x = mydata[, c("year", "SEX")]

> barMiss(x, col=c("white","grey"), only.miss = F)

> spineMiss(x, col=c("white","grey"), only.miss = F)
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Figure 3. Barplot and spineplot for the age variable. Grey colour indicates missing, white colour

represents available data in SEX

3. ábra Oszlopdiagram és spineplot az age változóra. A szürke a hiányzó, a fehér a meglévő

adatokat jelöli a SEX változóban

Figure 2 a shows that the relative frequency of missing values is high until 1988 and
in the last two years of the dataset. Potentially, the lack of available literature on sexing
and ageing of passerines in the 80’s is one of the causes of this pattern. A new principal
ringer started working at the station in 2013, and the pattern suggests that he might have
been less experienced in sexing Pied Flycatchers, therefore the slight increase in non-sexed
individuals. However, the spineplot shows that these fluctuations in missing data relative
frequency do not effect the bulk of the data, and excluding the aforementioned years, the
temporal distribution of NAs seems fairly even.

> x <- mydata[, c("age", "SEX")]

> barMiss(x, col=c("white","grey"), only.miss = F)

> spineMiss(x, col=c("white","grey"), only.miss = F)

Figure 3 shows the barplot (a) and spineplot (b) for missing values in case of age and SEX.
It is apparent from the latter that missing SEX values are more frequent in case of juveniles,
somewhat corroborating our previous assumptions, however there is a substantial number
of unsexed adults, despite the fact that in general all adults can be readily sexed in all
seasons.

> x <- mydata[, c("MASS", "WING")]

> barMiss(x, col=c("white","grey"), only.miss = F)

> spineMiss(x, col=c("white","grey"), only.miss = F)

To demonstrate how the barMiss() and spineMiss() functions depict continuous
variables we used the MASS and WING variables (Figure 4 a, b). An MCAR pattern can
be seen on the plot, since the proportion of missing values in WING seemingly does not
dependent on MASS.
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Figure 4. Histograms (a, c) and spinograms (b, d) for the MASS variable. Grey colour indicates

missing, white colour represents available data in WING

4. ábra Hisztogramok (a, b) és spinogramok (b, d) a MASS változóra. A szürke a hiányzó, a

fehér a meglévő adatokat jelöli a WING változóban

Compare Figure 4 a, b to an artificial example (Figure 4 c, d) that resembles the behaviour
of the ”soft-hearted ringer” mentioned previously. Here, we deleted the WING values, that
were measured on birds with MASS values below the 10% quantile (unmeasured birds in
bad condition). The figures show a clear indication of a not MCAR pattern.

> barMiss(MASS.WING, col=c("white","grey"), only.miss = F)

> spineMiss(MASS.WING, col=c("white","grey"), only.miss = F)
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Figure 5. Mosaic plot for age and year. Grey colour indicates missing, white colour represents

available data in SEX

5. ábra Mozaik ábra a age és year változókra. A szürke a hiányzó, a fehér a meglévő

adatokat jelöli a SEX változóban

Mosaic plot with highlighted missing values

Mosaic plots are graphical representations of multi-way contingency tables (Harnos et al.

2015a). The frequencies of the different category combinations (cells) are visualized by
area-proportional rectangles. Additionally, missing values in selected variables can be
highlighted using the mosaicMiss() function. The first parameter is the data table,
plotvars is a vector with the index of the variables to be plotted (age and year) and
finally highlight is the index of the variable (SEX) to be used for highlighting. In our
case the second and third variables in the subset table x are used for the mosaic plot, and the
missing values in the first variable (SEX) are highlighted. The miss.labels = "F"

deletes the labels for observed and missing values from the right side of the plot.

> x <- mydata[, c("SEX", "age","year")]

> mosaicMiss(x, col=c("white","grey"), plotvars = c(2,3),

highlight =1 , miss.labels = F)
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The figure shows that missing values in SEX nearly exclusively occur for juveniles in
the first couple of years, and are seemingly more frequent in most of the following years
of the study period. The figure also corroborates our previous assumptions regarding the
inexperience of the ringer in the last two years; juveniles have disproportionately more
missing values compared to adults and to previous years. Overall, there is also a sizeable
proportion of adults with missing SEX values (see also Figure 3) despite that all adults
can be sexed in hand. The only explanation here is human error and/or bad data recoding
practice. However, we may assume (as we have no reason not to assume) that both males
and females have equally been affected by missing values, therefore the an MCAR model
can be assumed.

Scatterplots with Missing Data Information in the Margins

The marginplot() function (Figure 6) creates a scatterplot and also depicts information
on missing values in the context of the variables of the x and y axes. Two box plots for
missing and observed data are shown in the outer margins of the plots. The two parallel
box plots along the vertical axis both represent the variable WING, but the light and dark
grey boxplots were made from the WING values, where the corresponding MASS values
are missing or available, respectively. (Note that the grey() function creates colours with
different grey levels. 0 indicates black and 1 indicates white.) The plot additionally shows a
univariate scatterplot (stripchart) of the values that are missing in the second variable (light
grey points), and the frequency of these values by a number (290 and 80). The number
in the lower left corner (here 24) is the number of observations that are missing in both
variables.

> x <- mydata[, c("MASS","WING")]

> marginplot(x, col=c(grey(.5), grey(.8)))

At first glance this may be a bit confusing but (Figure 6 b) will help disentangle how the
marginal boxplots relate to each other.

> marginplot(MASS.WING, col=c(grey(.5), grey(.8)))

Figure 6 b depicts the marginplot of the MASS variable and the WING variable, however
we deleted the values of WING where the MASS was below the 10% quantile (i.e. the ”soft-
hearted ringer” effect). Comparing Figure 6 a and Figure 6 b the first apparent difference
is that the scatterplot of the latter has a clear cutoff point. The marginal boxplots along
the y axes are identical in both figures, however the horizontal boxplots of Figure 6 b are
alarmingly different. The median of the light grey boxplot (showing MASS for individuals
with missing wing measurements) is approximately equal to the lower bound of the dark
grey box (showing MASS for individuals with existing WING measurements). This pattern
indicates a not MCAR model, and should sound the alarm bell of any analyst.
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Figure 6. Scatterplots for the MASS and WING variables. Light grey colour indicates missing,

dark grey colour represents available data in the other variable

6. ábra Szórásdiagram a MASS és WING változókra. A világosszürke jelöli a másik változóban

hiányzó, a sötétszürke a meglévő adatokat
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Concluding remarks

The methods described above are hopefully a good starting point to reveal the nature of
missing values in our dataset, however we need to emphasize that by no means did we
present the full set of available tools. For further information see e.g. the books of Little
(2016) and Enders (2010). We also encourage our readers to refer to other functions of the
VIM package (Kowarik & Templ 2016). Consult a statistician if unsure of the potential
mechanisms and effects of the missing values in the dataset. Finally, we recommend that
when publishing results, discuss in detail how missing values were treated and why they
may or may not affect the inference.
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