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Abstract In this paper, a complex morphological comparison of four Common Nightin-
gale groups (Luscinia megarhynchos) is demonstrated. In total, 121 territorial nightingales were mist-netted and 
measured individually on four study areas called ‘Bódva’, ‘Felső-Tisza’, ‘Szatmár-Bereg’ and ‘Bátorliget’ in the 
North-Eastern part of Hungary in 2006–2013. To distinguish groups by morphology, Classification and Regression 
Trees (CART), Random Forest (RF) and Linear Discriminant Analysis (LDA) methods were used. Comparison 
of the four studied Common Nightingale groups shows substantial morphological differences in the length of the 
second, the third and the fourth primaries (P2, P3, P4), in bill length (BL) and bill width (BW), while other charac-
teristics showed greater similarities. Based on the results of all the applied classification methods, birds originated 
from Szatmár-Bereg were clearly distinguishable from the others. The differences in morphology can be explained 
by interspecific competition or phenotypic plasticity resulting from the change of ecological, environmental para
meters. Our case study highlights the advantageous differences of the classification methods to distinguish groups 
with similar morphology and to choose important variables for classification. In conclusion, broad application of 
the classification methods RF and CART is highly recommended in comparative ecological studies.

Keywords: Luscinia megarhynchos, classification and regression trees, random forest, linear discriminant analy-
sis, morphological classification

Összefoglalás A tanulmányban négy fülemüle (Luscinia megarhynchos) állomány komplex morfológiai összeha-
sonlítását mutatjuk be, az ökológiai vizsgálatokban csak kevésbé ismert klasszifikációs módszerekkel. Magyar-
ország északkeleti részén, négy populáció (‘Bódva’, ‘Felső-Tisza’, ‘Szatmár-Bereg’ és ‘Bátorliget’) összesen 121 
egyedéről vettünk fel biometriai adatokat 2006 és 2013 között. Az állományok morfológiai elkülönítésére a vé-
letlen erdők (RF), döntési fák (CART) és a lineáris diszkriminancia analízis (LDA) módszereket alkalmaztuk. 
A négy fülemüle állomány a második, harmadik és negyedik kézevezők hosszában (P2, P3, P4), a csőrhosszban 
(BL) és csőrszélesség (BW) tekintetében mutatott különbséget. Az általunk használt klasszifikációs módszerek-
kel a szatmár-beregi fülemüle csoport a többi állománytól határozottan elkülöníthető. A morfológiai különálló-
ságot a kompetíciós verseny vagy a fenotípusos plaszticitás magyarázhatja, amelyek gyakori oka az ökológiai, 
környezeti paraméterek minőségi megváltozása. Esettanulmányunk elsősorban a különböző klasszifikációs mód-
szerek alkalmazhatóságára hívja fel a figyelmet, amellyel az egymáshoz hasonló morfológiájú populációk elkü-
lönítésére, valamint az elkülönítésében szerepet játszó változók meghatározására is lehetőség nyílik. Eredménye-
ink alapján a CART és RF modellek széleskörű használatát javasoljuk a hasonló jellegű ökológiai vizsgálatokban.

Kulcsszavak: Luscinia megarhynchos, klasszifikációs és regressziós fák, véletlen erdők, lineáris diszkriminancia 
elemzés, morfológiai klasszifikáció
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Introduction

Despite the fact that most of the European 
passerines are identifiable by their morpho-
logical traits (Cramp 1988, Sibley & Mon-
roe 1990, Svensson 1992, Watson 2005), 
there may be groups that are hidden in mor-
phologically cryptic assemblages, which 
has impeded their discovery (e.g. Illera et al. 
2008), especially under field circumstances. 

In particular, on species of some partial-
ly or totally overlapping groups, little or 
non-significant differences can be observed 
in their morphological traits (e.g. Päckert et 
al. 2007). If there is gene flow between sis-
ter groups breeding next to each other, con-
siderable differences may arise in their mor-
phological or phylogenetical characteristics 

(e.g. Leisler et al. 1997) and in their vocali-
zation (e.g. Lara et al. 2012).

Linear discriminant analysis (LDA) and 
logistic regression (LR) are often used in 
ecological studies for classification. The 
usage of these traditional methods is re-
stricted due to their conditions of applica-
bility and their special purpose. For exam-
ple, the binary outcome in case of LR, and 
– in case of LDA – the assumptions that 
the variables should be linearly related and 
come from a multivariate normal distribu-
tion with homogeneous within-group vari
ance. Real ecological variables are often 
nonlinearly related and have complex in-
teractions and nonhomogeneous dispersion 
(Cutler et al. 2007). Novel classification 
methods like Classification and Regression 

Figure 1.	 Location of the study areas (1. Bódva, 2. Felső-Tisza, 3. Szatmár-Bereg, 4. Bátorliget)
1. ábra	 A vizsgálati területek elhelyezkedése (1. Bódva, 2. Felső-Tisza, 3. Szatmár-Bereg, 4. Bátorliget)



ORNIS HUNGARICA 2015. 23(2)22

Trees and Random Forest methods (De’ath 
& Fabricius 2000, Strobl et al. 2007) can be 
used in such cases. 

The Common Nightingale (Luscinia me-
garhynchos Brehm, 1831) is a widely dis-
tributed species via the Palearctic (Cramp 
1988). However, morphological differences 
among their populations have been reported 
so far only from Eastern Europe (e.g. Reifo-
vá et al. 2011, Kováts et al. 2013). 

Here, we report how relevant variables 
can be selected effectively to distinguish 
particular groups of Common Nightingales 
caught in four closely situated study sites in 
the North-Eastern part of Hungary. 

Materials and Methods

Study area

Four study areas were investigated which 
are situated along the river flood plain areas 
of Bódva (48°27’N, 20°43’E), on the river-
sides of Felső-Tisza (48°10’N, 21°42’E), in 
Szatmár-Bereg (48°07’N, 22°30’E) and in 
Bátorliget (47°45’N, 22°26’E) in the north-
easter region of Hungary (Figure 1). All of 
these field sites are covered by a rich vege
tation of seminatural hardwood and soft-
wood riparian forests with thickets, stands 
of patchy undergrowth, small ponds and 
sinuous backwaters. The proportion of the 
seminatural forests is relatively high in 
Felső-Tisza and in Bátorliget (approx. 32% 
and 21%), while it is lower (approx. 4% and 
2% only) in Bódva and in Szatmár-Bereg 
(unpublished data). 

Biometric measurements

All measurements were collected in 2006–
2013. Birds were captured during the peak 

of the breeding season, from early May to 
late June, using Ecotone® mist-nets of dif-
ferent sizes and tape luring (Busse 2000). 
All birds were measured in millimetres ac-
cording to Svensson’s (1992) recommen-
dations, in the following order: maximal 
wing length [MWL], wing index (differ-
ence in length between the first primary and 
wing tip) [WIx], distance between the wing 
point and the first secondary [I/II], relative 
length of the first primary [rLP1], length of 
the second-, third- and fourth primaries [P2, 
P3, P4], tail length [TL], bill length (mea
sured to skull) [BL], bill width (measured 
on the frontal margin of nostrils) [BW] and 
tarsus length [TL]. In addition, wing-point-
edness [Wp] and wing-symmetry [Wsym] in-
dexes were calculated following Hołyn-
ski (1965) and Busse (1967, 2000). Wing 
characteristics were measured with a plas-
tic ruler to the closest 1.0 mm, while for the 
measurements taken on the bill and tarsus a 
metal calliper with the accuracy of 0.1 mm 
was used. Furthermore, body mass was also 
recorded to the closest 0.1 g using a 60-g 
Pesola spring scale. Only the data of males 
were analysed.

The phylogenetic patterns of all individ-
uals measured in this study had been pre-
viously identified and published elsewhere 
(Ács & Kováts 2013). Direct PCR sequenc-
ing of the mitochondrial DNA (cytochrome 
oxidase subunit I – COI gene) confirmed 
that all haplotypes of these four groups 
are genetically homogeneous with low se-
quence heterogeneity, thus, they are close-
ly related.

Statistical analyses

In total, 121 individuals were measured 
in the four study areas (Bódva: n=33, 
Felső-Tisza: n=38, Szatmár-Bereg: n=23, 
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Bátorliget: n=27). For morphological clas-
sification, Classification and Regression 
Trees, Random Forests and Linear Dis-
criminant Analyses were simultaneously 
used. All the calculations were done using 
the statistical software R 2.15.2. (R Core 
Team 2010). The level of significance was 
set to 0.05.

Methods for morphological classification 
of the breeding nightingale groups 

Classification and Regression Trees 
(CART)

CART is ideally suited for the analysis of 
complex ecological data (De’ath & Fabri-
cius 2000, Berggren & Low 2006, Cutler et 
al. 2007). It recognizes relevant variables 
automatically and clearly illustrates their in-
terrelationships and interactions as well. 

CARTs are built using a simple nonpara
metric regression approach. Both numeri
cal and categorical variables (covariates) 
can be used to build a tree. The general rule 
is to split the observations into two parts 
based on a predictor variable (root), then to 
split the subset further based on another or 
the same variable. Then we repeat the pro-
cess recursively until a stopping criterion is 
reached. So the space spanned by all pre-
dictor variables is recursively partitioned 
into a set of rectangular areas, where the ob-
servations with similar response values are 
grouped and a constant value (a simple sta-
tistics like the mean, or proportion in case of 
a categorical response) of the response vari-
able is predicted. The aim at each cutting is 
to reach maximum homogeneity in the re-
sponse variable within the groups.

In case of the ‘ctree’ function of the ‘par-
ty’ package (Hothorn et al. 2006a) used in 
this paper, the cutting points are determined 

and tested by an association measure be-
tween the response and the covariates. If 
there is no more significant relationship be-
tween the response and covariates the recur-
sion stops. It can also be stopped by other 
criteria like the size of the tree, or the num-
ber of observations at the cutting points 
or on the leaves. The level of significance 
can be adjusted too. The trees are represen
ted graphically and make it easy to under-
stand the relationship of explanatory varia-
bles. Important variables are tested near the 
root, while less important ones right next to 
the leaves of the CART. It is possible that 
some of the explanatory variables do not ap-
pear in the tree, as not influencing the re-
sponse variable or explaining the same as 
one or more other variables strongly cor-
related with them. These are considered to 
be irrelevant. In addition, trees are invariant 
to monotonic transformations of the inde-
pendent numeric variables; moreover, they 
recognize interactions. If a classification or 
regression tree is built, it is able to classi-
fy new data. Every new observation can be 
connected to the relevant leaves of the trees. 

Random Forests (RF)

Random Forest (Breiman 2001, Prinzie & 
Van-Del Poel 2008) is a recursive classifi-
cation method, which is particularly effec-
tive when the sample size (n) is small but 
the number of the predictor variables (p) is 
large even in the presence of complex inter-
actions (Strobl et al. 2007, 2008, 2009). 

RF is an ensemble of Classification and 
Regression Trees. Each tree is built using 
a random subset of the data and a random 
subset of the variables chosen at each cut-
ting point of the tree. Due to this metho
dology, RFs are more suitable to investigate 
the role of the variables like simpler me
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thods using all of the variables simultane-
ously, thus the variables with greater impact 
can suppress the role of those having smal
ler impact (Strobl et al. 2007, 2008). Fur-
thermore, the classification performance of 
an ensemble of trees can be much better.

Using this method, the importance of va
riables can be estimated by measuring the 
difference in prediction accuracy (i.e. the 
number of observations classified correctly) 
before and after permuting a variable, aver-
aged over all trees. If accuracy changes on-
ly a little, then the variable has no important 
role, otherwise its role is substantial. Condi-
tional permutation importance considering 
the correlation between the variables can be 
calculated yielding an unbiased estimate of 
the importance. 

This variable importance measure can be 
applied for variable selection. In this study, 
we used it for selecting those variables that 
play important roles in separating the groups 
living in different areas. We used the ‘cfo
rest’ function of the R ’party’ package (Ho-
thorn et al. 2006b, Strobl et al. 2007, 2008) 
for the analysis.

Linear Discriminant Analysis (LDA)

The purpose of discriminant analysis is to 
create a function which is able to classify 
the observations into two or more groups 

(the value of the function changes substan-
tially group by group). Linear discriminant 
function is a linear combination of the pre-
dictor variables. More functions (number of 
groups minus one) can be created (Manly 
1986). LDA was fitted by the ‘lda’ function 
of the ‘MASS’ package (Venables & Rip-
ley 2002). The classifications were carried 
out by all three methods. The efficacy of the 
methods can be investigated by comparing 
the observed and predicted groups and by 
calculating the prediction accuracy, which 
is simply the ratio in percentage of the well 
classified observations. 

Results

Based on the results of Random Forest, P2, 
P3, and P4, followed by BL, BW and TL 
were the most important variables to dis-
tinguish the four Common Nightingale 
groups. According to the fitted RF, the pre-
diction accuracy was 81.7%, considered to 
be a good prediction (Table 1). The vari
ables in the order of importance are de-
scribed on Figure 2.

In contrast, the prediction accuracy of 
CART was lower, reaching only 57.4% 
(Table 2). However, as in RF, P2 and BL were 
also considered as important morphological 
variables by CART, while body mass (BM) – 

Observed group

Predicted group Bátorliget Bódva Felső-Tisza Szatmár-Bereg

Bátorliget 22 2 2 1

Bódva 3 19 2 1

Felső-Tisza 2 7 33 1

Szatmár-Bereg 0 0 0 20

Prediction accuracy: 81.7%

Table 1.	 Contingency table of observed and predicted groups by random forest (RF)
1. táblázat	 A véletlen erdők (RF) által prediktált és megfigyelt populációk kontingencia-táblája



25D. Kováts & A. Harnos

similarly to the RF’s prediction – was classi-
fied farther from the root (Figure 3). 

Describing the data on the plot of the 
first two discriminant axes of LDA, ‘Szat-
már-Bereg’ group is clearly distinguished 
(Figure 4). Coefficients of the discrimi-
nant functions are given in Table 3. Con-
sidering the correlations of the discrimi-
nant functions with the original variables, 
LD1 is highly correlated with P2, P3 and 
P4, while LD2 with BL and BW (Table 4). 
These results imply that the four nightingale 
groups differ somewhat from each other in 
the length of primaries and bill sizes, while 
other morphological traits showed greater 
similarities between the study areas.

In case of LDA, prediction accuracy was 
64.3% (Table 5), which was slightly bet-
ter than in case of CART, but worse than in 
case of RF.

Discussion

Morphological differences of the four 
nightingale groups

In zoology, the analysis of morphologi-
cal characteristics is particularly important, 
since the individual taxa and populations can 
only be identified and distinguished by cer-
tain key traits under field conditions. Based 

Observed group 

Predicted group Bátorliget Bódva Felső-Tisza Szatmár-Bereg

Bátorliget 12 4 3 6

Bódva 7 16 6 4

Felső-Tisza 8 1 28 3

Szatmár-Bereg 0 0 0 10

Prediction accuracy: 57.4%

Figure 2.	 The morphological variables in order of importance estimated by Random Forest (RF)
2. ábra	 A morfológiai célváltozók a véletlen erdők (RF) által meghatározott fontossági sorrendben

Table 2.	 Contingency table of observed and predicted groups by classification and regression 
trees (CART)

2. táblázat	 A döntési fa (CART) által prediktált és megfigyelt populációk kontingencia-táblája
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Figure 3.	 The most important morphological variables given by CART and their interactions. 
Common Nightingales with narrower bills are distributed in the surroundings of Bódva and 
Felső-Tisza, while other individuals with wider ones occur in Bátorliget and Szatmár-Bereg. 
For each inner node, the Bonferroni-adjusted P-values and the ranges on the branches are 
given, while the fraction of each area is displayed on the leaves

3. ábra	 Döntési fa (CART) által lényegesnek ítélt és kijelölt morfológiai célváltozók, valamint 
azok interakciói. A keskenyebb csőrű madarak inkább a Bódva és Felső-Tisza környékén, 
míg a szélesebb csőrűek Bátorliget és Szatmár-Bereg területén terjedtek el. Minden belső 
csomópont esetén láthatóak a Bonferroni módszerrel korrigált p-értékek és az ágakon a 
változók értéktartományai, a leveleken pedig az egyes területek aránya

Figure 4.	 The data described on the first 
(LD1) and second (LD2) discrimi-
nant axes. Marked separation of 
the individuals from Szatmár-Bereg 
is clearly visible, whereas those of 
Bódva and Felső-Tisza greatly over-
lap

4. ábra	 Az adatok az első és a második 
diszkriminancia tengely mentén 
(LD1 és LD2) való eloszlása. A szat-
már-beregi állomány elkülönülé-
se jól megfigyelhető, míg a bódvai, 
felső-tiszai állományok egymással 
jelentősen átfednek
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Observed group

Predicted group Bátorliget Bódva Felső-Tisza Szatmár-Bereg

Bátorliget 19 6 2 4

Bódva 2 13 9 1

Felső-Tisza 6 9 26 2

Szatmár-Bereg 0 0 0 16

Prediction accuracy: 64.3%

Variable LD1 LD2 LD3

P2 0.1072 -0.1882 0.2886

P3 0.2652 0.1577 0.3383

P4 0.1186 0.1307 -0.6078

BL 0.3518 0.4602 0.6926

BW 0.7542 2.3300 -2.4910

TL -0.0874 -0.2436 -0.1034

BM -0.2831 0.2639 0.2189

rLP1 0.1695 -0.2287 0.2974

MWL -0.2484 0.1171 -0.2654

I/II 0.0848 -0.3620 0.3236

Wsym 0.0434 0.0234 -0.2389

WIx 0.1022 -0.0220 0.0020

Rate of 
explained 
variance (%)

67.8 19.7 12.5

Variable LD1 LD2 LD3

BM -0.2116 0.4398 0.167

MWL 0.2121 -0.0066 -0.369

WIx 0.3583 -0.0776 -0.151

P3 0.8260 -0.0740 -0.179

rLP1 0.0415 -0.1572 0.419

I/II 0.3246 -0.3886 0.171

TL 0.0351 -0.3777 -0.545

Wp 0.2272 -0.0533 0.120

Wsym 0.2348 0.0773 -0.116

P2 0.8158 -0.0273 -0.201

P4 0.8239 -0.0479 -0.247

BL 0.0390 0.6675 0.323

BW -0.0379 0.6304 -0.275

Table 3.	 Coefficients of the three linear discri-
minant functions (LD1-3) 

3. táblázat	 A lineáris diszkriminancia függvé-
nyek (LD1-3) együtthatói

Table 4.	 Correlation coefficients of the line
ar discriminant functions and the 
measured variables. The strongest 
correlation coefficients are highligh
ted in bold

4. táblázat	 A lineáris diszkriminancia függvé-
nyek és a mért változók korrelációs 
együtthatói. A legnagyobb korrelá-
ciós együtthatókat kiemeltük

Table 5.	 Contingency table of observed and predicted groups by linear discriminant analysis 
(LDA)

5. táblázat 	A lineáris diszkriminancia analízis (LDA) által prediktált és megfigyelt populációk kontin-
gencia-táblája
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on the correlations of the measured varia-
bles and the linear discriminant functions, 
the four studied nightingale groups can be 
distinguished on the basis of the length of 
the primaries (P2, P3, P4), bill length (BL) 
and bill width (BW). RF also found these 
variables as the most important ones in dis-
tinguishing the groups. 

Our CART trees clearly indicate that birds 
the Szatmár-Bereg area can be distinguished 
from the others solely on the basis of the 4th 
primary length (P4) (Figure 3). This kind 
of marked difference between groups with 
closely situated habitats can possibly be at-
tributed to three alternative, but mutual-
ly non-exclusive reasons. First, phenotypic 
plasticity in site-faithful species can adapt 
their morphological characteristics to local 
environment (Grant 1999, Tellería & Car-
bonell 1999, Agrawal 2001, Pfennig et al. 
2010, Reifová et al. 2011). Second, due to 
the site fidelity of the Common Nightin-
gale (Sorjonen 1986, Lille 1988, Amrhein et 
al. 2004) certain characteristics can be in-
herited within a group consisting of phy-
logenetically homogenous individuals (Ács 
& Kováts 2013). Third, the formerly regu-
lar breeding of the closely related Thrush 
Nightingale L. luscinia in this area could 
have resulted in hybridization at this locali-
ty (Ács & Kováts 2013).

Our results imply that the birds of Szat-
már-Bereg comprise a unique group, high-
lighting the importance of morphological 
differences. Concerning bill width (BW) 
the CART suggests that birds with narrower 
bills are distributed in the areas of Bódva 
and Felső-Tisza, while others with wider 
ones occur in Bátorliget and Szatmár-Bereg 
(Figure 3, 4). These differences are proba-
bly due to nutritional stress as Reifová et al. 
(2011) assumed in Poland. This can mani
fest in available foods, especially in the 

breeding season when several kinds of in-
sects are the most important food sources, 
corresponding to the particular habitat. 

Discussion of the statistical methodology

Traditional classification methods like dis-
criminant analyses or logistic regression are 
often used in ecological studies. Classifica-
tion and Regression Trees, as well as Ran-
dom Forests used by us are not as wide-
spread. Both methods have the advantage 
that the response and predictor variables 
don’t have to be linearly related and prac-
tically can have any kind of distribution. 
CART is able to discover the interactions 
between the variables and the resulting de-
cision tree illustrates the connection system 
between the predictor and response vari
ables. RF builds an ensemble of the trees 
from the random subsets of the observations 
and the variables. Using this technique one 
can solve classification problems where the 
number of observations is small compared 
to the number of variables. Usually, the pre-
diction accuracy is greater with RF than in 
the case of building only one tree. The dis-
advantage of this method is that the result 
cannot be described as expressively as in the 
case of CART. A further advantage of RF 
is that it is very well suited for variable se-
lection, since it quantifies the importance of 
each variable. Moreover, the method used 
by us is able to give an unbiased estimate of 
the importance, which is essential in case of 
highly correlated variables.

In our study, RF proved to be the best, 
considering the prediction accuracy of the 
three methods (81.7%). LDA and CART 
yielded roughly similar results (64.3% and 
57.4%). RF and CART discovered more or 
less the same important explanatory variab
les, while CART fit only two of the three 
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highly correlated (P2, P3, P4) variables to 
the tree, but this is the consequence of the 
CART methodology. 

The simultaneous application of the three 
methods appears to be the most appropriate 
approach. RF performs very well in variable 
selection, and it reaches the highest predic-
tion accuracy, while CART gives more in-
formation in describing the connection sys-
tem of the variables. 

LDA enables us to calculate the discri-
minant scores using the discriminant func-
tions. With these scores, further analyses 
can be carried out (usually substantially less 
latent variables are generated) and the clus-
tering of the observations can be well de-
scribed graphically. 

In conclusion, above we intended to 
demonstrate that by using the combination 
of these methods, even differences between 
geographically very closely located groups 
can be detected reliably.
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