
219

Organizacija, Volume 45 Research papers Number 5, September-October 2012

Khalid Aboura1, Miroljub Kljajić2, Ali Eskandarian3

1
University of Technology Sydney, School of Civil and Environmental Engineering,15 Broadway, Ultimo, NSW 2007, 

Australia, kaboura@eng.uts.edu.au
2
University of Maribor, Faculty of Organizational Sciences, Kidričeva 55a, Kranj, Slovenia; miroljub.kljajic@fov.uni-mb.si

3
The George Washington University, Department of Physics, 805 21st Street, NW, Suite 301, Washington,  

DC  20052, U.S.A.; ea1102@gwu.edu

We discuss the concept of simulation and its application in the resolution of problems in complex industrial systems. Most 
problems of serious scale, be it an inventory problem, a production and distribution problem, a management of resources or 
process improvement, all real world problems require a mix of generic, data algorithmic and Ad-hoc solutions making the best 
of available information. We describe two projects in which analytical solutions were applied or contemplated. The first case 
study uses linear programming in the optimal allocation of advertising resources by a major internet service provider. The 
second study, in a series of projects, analyses options for the expansion of the production and distribution network of mining 
products, as part of a sensitive strategic business review. Using the examples, we make the case for the need of simulation 
in complex industrial problems where analytical solutions may be attempted but where the size and complexity of the problem 
forces a Monte Carlo approach.

Keywords: simulation, linear programming, multi-echelon inventory, production process.

The Need for Simulation in Complex 
Industrial Systems

1	 Introduction

Physical sciences attempt to put into equations the world sur-
rounding us. Even when those equations are known, it is hard 
to predict the outcome of events subject to a combination of 
rules. When designing an airplane, engineers test a model in 
wind tunnels. The turbulence and the aerodynamic forces are 
too complex to allow an analytical prediction. Simulating in a 
wind tunnel is the alternative. The act of reenacting a behavior 
many times in a simulation allows estimation and inference. 
When looking into complex industrial systems, the difficulty 
is due to the fact that many components interact and some 
have stochastic components. Often simulation is the only 
resort to predicting the behavior of the system. Time is taken 
to be discrete, in small intervals, to allow the modeling of the 
system in what is called discrete-event simulation. In discrete-
event simulation, the operation of a system is represented as 
a chronological sequence of events. A large body of literature 
exists on carrying out discrete-event simulation in systems that 
lead themselves to the approach. In essence, there are three 
parts; (1) the construction of a conceptual framework or model 
that describes the system, (2) the simulation, that is perform 
experiments using computer implementation of the model and 
(3) the analysis and drawing of conclusions from the computer 

model output. A number of books have been written, a classic 
being Ross (2006). There is a large number of open source 
and commercial software. Many researchers and entire firms 
specialize in simulation. We describe two projects in which 
analytical solutions were applied or contemplated. The first 
case study uses linear programming in the optimal allocation 
of advertising resources by a major internet service provider. 
The second study, in a series of projects, analyses options 
for the expansion of the production and distribution network 
of mining products, as part of a sensitive strategic business 
review. Using the examples, we make the case for the need of 
simulation in complex industrial problems where analytical 
solutions may be attempted but where the size and complexity 
of the problems force a Monte Carlo approach.

1.1 	 Dynamic allocation of web advertising 
resources

America Online (AOL) was the largest internet services pro-
vider in the late 1990’s. It was a leading company in times 
of the Dot-com bubble. The internet boom created a steady 
commercial use of the internet and AOL was selling a lot of 
advertising on its web pages. Clients contracted for advertising 
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time and their respective contract sizes were constantly chang-
ing. The ensuing dynamic process of bookings and reserva-
tions created a serious planning problem. The problem was 
further complicated by the clients’ choices. Each client chose 
a designated advertising area, a class of web pages in which 
to advertise. The policy of AOL for accepting all orders, in a 
highly dynamic reservation process, created difficult situations 
and bottlenecks. To bring improvement, Theoretica Inc. was 
contracted for the development of solutions (Aboura et al., 
2001). Linear programming models were developed capturing 
the decision rules favored for allocating and re-allocating the 
advertising resources. Linear programming is a powerful tool 
used successfully in many complex problems. It proved useful 
again in this situation. However, when the size of the problem 
grows in such planning problems, the computing becomes dif-
ficult and brings about the consideration of simulation. 

1.2 	 Facilities planning for production and 	
distribution

Three studies were conducted for an Australian chemical com-
pany that produces, stores and sells ammonium nitrate to min-
ing companies in Australia and overseas (Aboura et al., 1994; 
Aboura et al., 1995a; Aboura et al., 1995b). The chemical 

company is one of the world’s leading suppliers of commer-
cial products to the mining industry. The ammonium nitrate is 
a white inorganic salt with a melting point of 169.6 Celsius. 
It is an oxidizer which can make fuel substances burn more 
intensely than with air only. Air contains 21% Oxygen while 
ammonium nitrate contains 60%. Many forms of ammonium 
nitrate can be used to make a blasting agent. The company’s 
product is in the form of small porous spherical prills. The 
porous prill form is preferred for several reasons. It has good 
chemical properties, good physical properties and is easy to 
handle, distribute and store. The company also produces a gel 
form of the product for an easier use by the mining clients. For 
the products distribution to the mining industry, the company 
set up on-site plants near the mines. The on-site plants receive 
the ammonium nitrate products from regional distribution 
centers by trucks. The regional centers receive the ammo-
nium nitrate prill and the ammonium nitrate liquor from the 
manufacturing plant by rail and road. There is also an onsite 
delivery system where the products are delivered directly to 
the customers from the plant.

The goals of the research projects were to; (1) compare 
different configurations to the existing production/distribu-
tion system, (2) simulate the operations of the plant and (3) 
develop an inventory/distribution model for the production 
facility. In the first problem, alternative configurations of a 

Table 1: Definitions and terminology

AdSpace	 Advertising entity where a client’s ad can be placed. It is an entity to which an 
order’s demand or part of that demand can be assigned. Differently phrased, an 
AdSpace allocates advertising resources to a customer’s order.

Group A set of AdSpaces. Such sets are formed to organize the AdSpaces under a com-
mon marketing theme. An AdSpace can be placed in one, two or more groups.

Client A client is a customer that contracts for advertising. A client may have one or 
more contracts over a specified period of time.

Contract	 An agreement that specifies a customer’s order to place an ad in one or several 
groups of choice.

Order A contract creates an order for placing an ad for a certain amount of advertising 
resources. 

Group(s) of Choice A group or groups preferred by a client’s contract. The group(s) of choice is part 
of the order along with the magnitude of that order.

AdSpace Id A number that identifies an AdSpace.

Group Id A number to identify a group.

Group Intersection The intersection of two groups is the set of AdSpaces that belong to both groups.

Adjacent Groups Two groups are said to be adjacent if they intersect.

Impressions One unit of advertising resource is an impression unit.

AdSpace Availability The number of impressions available for allocation from an AdSpace.

AdSpace Capacity The maximum availability of an AdSpace is the capacity of the AdSpace.



221

Organizacija, Volume 45 Research papers Number 5, September-October 2012

multi-echelon production and distribution system were evalu-
ated. The relevant differences in the configurations consid-
ered were the setup, inventory and transportation costs and 
the availability of product (costs vs stockouts). The mining 
customers do not plan their demand. The company has to 
deliver upon demand, the next day the command is made. The 
on-site-plants located near the customers had limited storage 
capacity and needed some time to replenish from the regional 
center. Even more time was needed to deliver from the plant 
to the regional centers. To store the liquid form at the on-site 
plants required special and expensive storage tanks. All of this 
made for a production/distribution system that had a Just-in-
Time operating mode. In addition, the demand was expected 
to increase substantially over the next years and the company 
was looking at expanding its distribution network in the most 
efficient way. 

2	 Research Methodology for Dynamic 
Group Reservation

In this section we present the research methodology applied in 
the analytical study phase of the Dynamic Group Reservation 
project (Aboura et al., 2001). The analytical study phase con-
sisted of determining solution approaches and methodology 
for the optimal allocation of web advertising resources for 
America Online (Section 1.1). 

2.1 	 Definitions and terminology

The service provided to customers is the placing of the cus-
tomers’ ads in web advertising spaces. The advertising spaces 
are referred to as Ad Spaces, or AdSpaces for ease of termi-
nology. The AdSpaces are limited in number and their number 
varies over time due to the creation and elimination of some 
of these AdSpaces. The AdSpaces are entities with advertising 
resources measured in number of impressions. At a point in 
time, an AdSpace may be used to a certain percentage of its 
capacity. The remaining resources make up that AdSpace’s 
availability. In Table 1, we introduce some definitions and 
terminology.

An AdSpace allocates resources to an order by provid-
ing a number of impressions to satisfy the order’s demand or 
part of it. When an AdSpace allocates resources towards the 
demand of an order, we define that part of the demand that 
has been satisfied by the AdSpace as having been assigned to 
that AdSpace. The two operations, allocation and assignment 
are the same. The former applies to the resources going out of 
the AdSpace while the later refers to the ad (in a number of 
impressions demanded) going into the AdSpace. The groups 
are labeled G1, G2, G3 … . They may also be referred to as A, 
B, C … . AdSpaces are labeled MN1, MN2, MN3 …, or simply 
1,2,3 …, as understood from the context of the situation being 
described. The orders from different contracts are referred to 
as O1, O2, O3 … The AdSpaces capacities are labeled c1, c2, 
c3 … . AdSpace utilization is the percentage of impressions 
already allocated, that is (capacity – availability) x 100 / 
capacity. The AdSpaces utilizations are labeled u1, u2, u3 … . 

2.2 	 The Basic Allocation/Assignment Problem

We first considered the problem of how to re-allocate resourc-
es so that a set of arriving demands can be satisfied. This prob-
lem is called the Basic Allocation/Assignment Problem. The 
solution to the basic problem provides the solution to the more 
general problem of optimally allocating advertising resources 
over large periods of time. In the basic problem, the new 
order is labeled an arriving order with an arriving demand. 
The problem is how to allocate resources to this new demand 
from its group(s) of choice when some of the resources of the 
AdSpaces of those group have already been allocated. A cus-
tomer order’s demand may be divided so that its parts can be 
assigned to different AdSpaces. 

Suppose that an arriving order O is of magnitude d0. 
Suppose that the corresponding contract states the group A 
as its group of choice. That is, the corresponding customer 
prefers that the ad appears in group A for a number d0 of 
impressions. In this basic case, the contract targets only one 
group. In general, the contract may specify additional groups 
of choice. If there is enough availability in group A, that is the 
sum of unused advertising resources in the AdSpaces of group 
A are greater than or equal to d0, then the order O is satis-
fied. d0 is divided among some or all the AdSpaces in group 
A. The availabilities of the AdSpaces providing resources to 
satisfy the demand are reduced by the amount they provide. 
If one AdSpace in A can accommodate the whole of d0 then 
there is no need to divide d0. This situation is ideal as the 
problem is solved easily. Most often it is not the case. The 
interest is on solving the problem when the arriving order 
does not find enough availability in that group. To be able to 
assign the demand d0 in A when the total availability in A is 
less than d0, previously assigned demands in AdSpaces of A 
(or parts of previously assigned demands) are reassigned to 
other AdSpaces in groups other than A. Preferably, this reas-
signment is done in adjacent groups of A so that demands 
moved are not ‘too far’ from their group of choice. That is, by 
reconsidering previously made assignments, enough resources 
in group A are freed to accommodate the arriving demand d0. 
This re-allocation is done so that the new order is satisfied 
while all previous demands also remain satisfied. The problem 
is to find the best way to do a reallocation and create a minimal 
displacement of previously assigned demands from their cur-
rent AdSpaces. We present two solutions. We first discuss an 
Ad-hoc solution favored by the planning department. We then 
present the optimal linear programming solution. 

2.3 	 Groups-AdSpaces structure

The AdSpaces are numerous and their large number creates 
the complexity of the problem. For the sake of the analytical 
study, we considered the number of AdSpaces to be constant 
over time. The solutions can be extended to the case where 
new AdSpaces are created and some existing ones eliminated. 
Groups are sets of AdSpaces. An AdSpace can belong to many 
groups. This creates a topology that is important to the reso-
lution of the problem. Upon analysis, the Groups-AdSpaces 
structure revealed a clustered form. Some sets of groups form 
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clusters, as symbolically shown in Figure 1 where a Venn 
diagram set represents a group. The result allowed us to focus 
attention to a cluster of groups therefore reducing the size 
of the problem. This was done through some mathematical 
modelling techniques such as dummy variables to artificially 
divide the set of groups into clusters. For the reminder of the 
work, we assume that our world is a cluster. We define a clus-
ter of groups as being a set of groups that can be connected to 
each other through a series of intersections. 

Figure 1: Cluster structure of groups

We then introduced the notion of a distance between 
groups. This measure is essential to the construction of a solu-
tion. Let A be a group. We first define the distance of A to 
itself as being zero. We use the notation Dist(A,A) = 0. Let B 
be another group. A and B are not the same group but they do 
intersect. We define the distance of B to A, and by symmetry 
the distance of A to B, as being Dist(A,B) = Dist(B,A) = 1, if 
A ∩ B ≠ Ø. Let C be another group. Assume that C does not 
intersect with A but C does intersect with B. We define the 
distance of C to A to be 2; Dist(A,C) = 2, if A ∩ C = Ø, A ∩ 
B ≠ Ø and B ∩ C ≠ Ø. The group distance is defined as the 

minimum number of groups needed to link the two groups. In 
Figure 2, we illustrate the case where two groups are linked 
through a series of intersecting groups. However, it is the mini-
mum number of groups in one series that provides the value of 
the distance from one group to the other.

The solution to the problem is the specification of assign-
ment made to AdSpaces. In order to construct a solution algo-
rithm, we must define the distance between two AdSpaces. 
Let two AdSpaces be MNi and MNj. We define the distance of 
these two AdSpaces to be zero if they are the same AdSpace; 
Da(MNi,MNj) = 0, if i = j. If the AdSpaces belong to the 
same group, then similarly Da(MNi,MNj) = 0. Otherwise, let 
Da(MNi,MNj) = minimum Dist(A,B), the minimum taken 
over all the groups A and B such that MNi ϵ A and MNj ϵ B. 
The distance of two AdSpaces that do not belong to the same 
group is the minimum distance between the groups to which 
these AdSpaces belong. Figure 3 shows an example.

Figure 3: Distance between AdSpaces

2.4 	 Ad-hoc Solution: The Top-Down Approach

Consider an arriving order O that carries a demand d0 for 
its group of choice A. Suppose that group A intersects with 
groups B, C and D. Suppose that groups B and C intersect with 
group E and group D intersects with group F. Furthermore, in 
this example, groups A, E and F do not intersect. F does not 
intersect with either B or C nor does E intersect with D. Figure 
4 shows a representation of these groups. 

If the availability of group A, that is the sum of the avail-
abilities of its AdSpaces, is greater than or equal to d0, then the 
order is satisfied. If d0 is greater than the availability of group 
A, let e = d0 – Availability(A). e is the part of the arriving order 
that could not be assigned to group A. To satisfy the order, we 
must free resources in A. Based on the premise that we allow 
moving orders (or parts of) already assigned to neighboring 
AdSpaces and groups, we reassign some of the content of the 
AdSpaces of A into AdSpaces of groups B, C and D. If it is 
possible to do so for at least e impressions, we have solved 
the problem, at least until the next order. However, the avail-
abilities of groups B, C and D may not add up to e. In which 
case we must move some of the content of the AdSpaces of 

Figure 2: Two groups linked through two series of intersecting 
groups
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B and C into AdSpaces that belong to group E. If still neces-
sary, we also do the same to AdSpaces in D and move some 
of their content into group F. In this manner, we free enough 
resources in B, C and D, which in turn free enough for the 
remaining unsatisfied amount e in A. We prefer that all assign-
ments are made as close as possible to their groups of choice. 
In assigning a quantity from an order, or reassigning a number 
of impressions from an AdSpace, we choose an AdSpace 
that is either in the group of choice or the same group for an 
already assigned quantity. The next preferred AdSpace would 
be in an adjacent group, then in a group that is adjacent to an 
adjacent group and so on. We can see that a hierarchical notion 
would organize the cluster. We use the notion of distance. 
With the measure of distance between groups of a cluster, we 
can formally describe the Top-Down approach. Dist(A,B) = 
Dist(A,C) = Dist(A,D) = 1, Dist(B,E) = Dist(C,E) = Dist(D,F) 
= 1 and Dist(A,E) = Dist(A,F) = 2. Dist(B,C) = 1, Dist(D,E) 
= Dist(B,F) = Dist(C,F) = 3 and Dist(E,F) = 4. We organize 

these 6 groups into a hierarchical structure according to their 
distances to group A, as shown in Figure 5.

To proceed with order O, we go from one hierarchical 
level to the next lower one to free resources so that they can 
be allocated to the higher hierarchical level. This is the Top-
Down Approach. In applying the Top-Down Approach, we add 
up the distances traveled by quantities of impressions from one 
group to another. The algorithm reassigns quantities but keeps 
track of the total distance traveled. The goal is to determine the 
minimal total sum of distances traveled to satisfy the arriving 
demand. Suppose that a unit of impression is moved to the 
lower level, incurring a cost of 1 since the traveled distance is 
1. But to do so we need to move another unit of impression 
from that lower level to its next lower level to make space 
for the first unit. The total cost becomes 2. In the Top-Down 
Approach, the solution prohibits that first unit from jumping 
down two levels unless it has to. However, if we use the algo-
rithm basing ourselves only on the notion of distance, we may 
be overlooking the case where a unit jumps two levels down 
when it can be avoided. To make sure the algorithm performs 
according to the solution concept, we introduced a function to 
weight the distances. Let W(.) be a real function that applies to 
a distance between two groups. W(.) is such that W(Dist(A,B)) 
< Dist(A,B) for all distinct groups A and B except the most 
distant ones, W(0)=0 and W(Dmax)=Dmax, where Dmax is 
the maximum distance found in the cluster. It is a function that 
rescales the distances. For example, a simple function W(.) 
would be W(x) = x2/Dmax. If we now instruct the algorithm to 
keep track of not the distances, but of the weighted distances 
W(Dist(.,.)), then we will assure that the jump cited above 
does not occur. The proof of this is simple and will be omitted 
here. By introducing the notion of weighted distances among 
groups, we force the algorithm to perform precisely as desired 
by the Top-Down Approach. The same weight function needs 
to apply to distances between AdSpaces. 

2.5 	 Linear Programming Solution

The Top-Down Approach provides a sensible answer to the 
Basic Allocation/Assignment Problem. However, as we will 
show in this section, one can do better in terms of minimiz-
ing the total displacement. We revisit the example used in the 
previous section. We add to the 6 groups considered a seventh 
group G. We make group G the second group of choice. Figure 
6 shows how G relates to the other 6 groups.

We assume that d0 = 15; A is full and has capacity 10. 
The availabilities of groups B, C, D, and E are zero. The avail-
ability of F is 10. G has a capacity of 20 but is being utilized 
at 50%. Availability of G is 10. Let us assume further that no 
other group is relevant to this example. Solution one may start 
by considering first how to allocate as much as possible from 
group A to the new order, then if remaining, it would then turn 
to group G. In this case, the cost incurred is 10(.2) + 10 (.2) + 
0 = 4, since W(1) = 1/5 = .2, as we assume that Dmax = 5 in 
this example. We are using the weighting function described 
above. Since 10 units are first moved from D to F, then 10 
units are moved from A to D to make room for 10 units of 
the new demand, and since the cost of putting the remaining 
5 units in G is zero, then the total cost is 4. However, if the 

Figure 4: Groups A, B, C, D, E and F 

Figure 5: Hierarchical Structure
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Top-Down Approach algorithm was to start with G, then the 
cost would be 0 + 5(.2) = 1, since 10 units are assigned imme-
diately to G, then 5 units previously assigned to G are moved 
into F therefore freeing another 5 units in G. The difference 
in displacement is important. One may then rank the groups 
of choice in order to start the solution algorithm with the most 
available group. Perhaps, but then consider the same example 
with F having an availability of 15 and G is full. In this case, 
the Top-Down Approach would have to fill up F as it is the 
only remaining availability of the sub-system we are consider-
ing. If the Top-Down Approach starts by considering group A 
as the first target, the incurred cost is 10(.2) + 10(.2) + 5(.2) = 
5, whereas starting with G leads to a 15(.2) = 3 cost. One may 
now think of developing other criteria for ranking the groups 
of choice as sequential targets for assigning the new demand. 
One can probably devise such a method. However, as the num-
ber of groups of choice increase, one is forced to start looking 
for a global approach to the problem. To do so, we revert to 
a mathematical formulation of the problem that would extend 
the idea of the first solution and considers all the interdepend-
encies of the groups, their capacities, their availabilities and 
their AdSpaces at the same time. The mathematical model is a 
linear programming problem. 

The solution, in concept, is to empty all the AdSpaces rel-
evant to the problem, add the new demand d0 to the problem 
and refill the AdSpaces so as to minimize the total displace-
ment. Consider a set of groups that are relevant to the problem 
and let their AdSpaces be MN1, MN2, MN3, … , MNn. Next, 
we setup a fictitious AdSpace, call it MN0, that has capacity 
0. Let c0, c1, c2, c3, …, cn be the capacities of the respective 
AdSpaces, including the dummy AdSpace. Let d0, d1, d2, d3, 
…, dn be demands constructed as follows; d0 is itself, that is 
the new demand we want to assign to some groups of choice. 
dj, j = 1, 2, 3, …, n, is the content of AdSpace MNj before 
we just emptied it. In other words, dj is what was assigned to 
AdSpace MNj before we started looking at the new demand. 
Let vi,j, i = 1, 2, 3, …, n, j = 1, 2, 3, …, n, be the decision vari-

ables of the mathematical model. Let wi,j, i = 1, 2, 3, …, n, j 
= 1, 2, 3, …, n, be the weighted distances of AdSpaces MNi 
and MNj. That is wi,j = W(Da(MNi, MNj)), i = 1, 2, 3, …, n, 
j = 1, 2, 3, …, n. Let w0,j = wj,0, j = 1, 2, 3, …, n be such that 
w0,j = 0 if Nj is an AdSpace that belongs to one of the groups 
of choice, and w0,j = minimum W(Dist(GC,G)), the mini-
mum taken over all groups of choice and all groups to which 
AdSpace MNj belongs. w0,j is the minimum weighted distance 
from any group of choice to AdSpace MNj, that is to groups to 
which AdSpace MNj belongs. We now define vij to be that part 
of the demand dj that will be assigned to AdSpace MNi. We 
have emptied the AdSpaces from their contents to construct 
n fictitious new demands, in addition to the new demand d0. 
We now want all these demands to compete going back into 
the AdSpaces. vij represent that part of demand dj that will be 
going into AdSpace MNi. The mathematical formulation is:
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The AdSpaces have capacities that cannot be exceeded. 
We introduce this part of the problem in the form of constraints 
on the decision variables. We do not want to assign more than 
the existing demands and the new one, in this problem. We 
therefore add another set of constraints on the decisions vari-
ables. All the decision variables must be non-negative. This is 
a formulation known as the Transportation Problem, a special 
case of linear programming. The mathematical problem seeks 
the minimization of the objective function. The final value of 
the objective function will give a magnitude of how much the 
quantities in the AdSpaces got reshuffled. If the value of the 
objective function is 0 (zero), it means that nothing was moved 
from its original location (the dj s returned to the groups from 
which they came, and d0 found space in groups of choice), or 
that the only reassignments occurred within the same groups. 
If the final value of the objective function (that is the value 
returned after the run of the algorithm) is moderate, then the 
quantity displaced is moderate. The objective function is a 
score function that tells us how much displacement needs to 
occur so that we can insert the new order. 

3	 Research Results

3.1 	 Resources allocation problem

In the linear programming formulation of the optimal alloca-
tion of web advertising resources, if the number of decision 
variables n + 1 is large, the solution becomes difficult to track 
in real time. The properties of the transportation problem 
allow determining how big n needs to be. A necessary and suf-

Figure 6: Example with a seventh group G
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ficient condition for the existence of a solution is that the total 
capacity of all the AdSpaces considered must be greater than 
or equal to all the total quantity we want to assign to them. 
When a new order d0 arrives, we need only to go down the 
groups such that we have enough AdSpaces considered, i.e. 
n is large enough so that the above condition is satisfied. By 
doing so we restrict the size of the problem. However, n may 
still be very large and may cause computational problems. A 
set of programs to implement the solutions was developed 
comprising three main routines, supporting interface and a 
utility for the analysis of data sets. The solution was applied 
on sets of data and observed to perform adequately. However, 
overnight the Dot-com bubble burst. The study was eventually 
abandoned. The demand for advertising decreased so rapidly 
the bottlenecks disappeared. While the solution remained a 
viable approach, we could foresee difficulties in applying it to 
the whole system, in view of the size and complexity involved.

3.2	 The production/distribution problem

Part of the facilities planning problem for production and 
distribution of Section 1.2 is a simple version of a multi-
echelon, multi-indenture inventory problem. A lot of research 
has been conducted in the development of analytical solutions 
for multi-echelon, multi-indenture inventory problems. The 
solutions make simplifying Poisson assumptions to utilize 
Palm’s theorem (Cox and Miller, 1977) in Queuing theory. 
The solutions are steady-state measures of effectiveness. 
The METRIC family models of the US Air Force or ACIM 
of the US Navy are solutions based on the Poisson assump-
tion (Sherbrooke, 2004). In some cases, solutions must be 
tailored. A mix of generic, algorithmic and Ad-hoc solutions 
were applied to the IBM distribution network. OPTIMIZER 
was developed in 1983-84 by IBM researchers and academic 
team (Cohen et al., 1990). It presented a system for flexible 
and optimal control of service levels and spare parts inven-
tory that addresses IBM’s inherent complexity and very large 
scale problem. OPTIMIZER greatly improved IBM’s Service 
Business, resulted in reduced inventory investment and operat-
ing cost and improved service levels and proved to be highly 
flexible. However, it took many years to develop and required 
the willingness of IBM to drastically change its inventory 
management policy. 

In the case of the production/distribution problem of 
Section 1.2 for comparing different configurations, an ana-
lytical solution was considered. However it would have landed 
short as the system was too complex to accept simplifying 
assumptions. For reasons of commercial competitiveness, the 
company was in need of a solution as the market was expand-
ing and the competition was swift between the different pro-
viders. Simulation became the most sensible approach. It took 
into account all relevant details and delivered a quick compari-
son between all considered expansion configurations, along 
with good estimates for forecast values. Company managers 
have also an easier attitude towards a simulation model once 
validation is conducted. The simulation was conducted with an 
animated solution. A simulation of three system configurations 
was conducted after a proper statistical analysis and modeling 
of all stochastic components. The statistical analysis looked 

at customer demand, daily production, frequency of train 
departures and other characteristics. A statistical model was 
developed for each on-site plant that allowed build-in annual 
increase. For the simulation, runs of several replications for a 
period of two years were made. Most statistics didn’t require 
a larger number of replications for variance reduction. A con-
fidential conclusion was reached (Aboura et al., 1994) that 
preceded a major expansion of the company in the mining 
sector. Satisfaction was expressed by the company and led to 
two other projects whereby a simulation of the operations of 
the plant was conducted in detail along with the simulation of 
its inventory and distribution system in Australia and overseas 
(Aboura et al., 1995a, Aboura et al., 1995b).

4 	 Discussion

Linear programming is well suited to allocation problems. In 
the Basic Allocation/Assignment Problem, we assign orders to 
AdSpaces or equivalently allocate resources from the AdSpace 
to a contract. These types of problems have been well studied 
and the transportation problem solution applies well. The gen-
eral transportation problem is concerned with distributing any 
commodity from any group of supply centers, called sources, 
to any group of receiving centers, called destinations, in such 
a way as to minimize the total distribution cost. Any linear 
programming problem that fits this special formulation is of 
the transportation problem type, regardless of its physical con-
text. Linear programming proved valuable for modeling many 
and diverse types of problems. Scientific research on the topic 
dates to the 1950’s when the Simplex Method was developed 
by Dantzig (Rardin, 1998). Linear programs in thousands 
of variables and constraints are nowadays viewed as small. 
However, in a booking environment like that of the web adver-
tising company, time is of the essence and the computational 
speed becomes an important issue. The Simplex Method has a 
number of iterations that seems linear in the size of the prob-
lem. Klee and Minty (1972) however found examples where 
the number of iterations performed by certain variants of the 
method was exponential. In general, linear programming 
problems can be solved in time polynomial. But these results 
proved theoretical. Consequently, other methods, known as 
interior-point methods were developed in the 1980’s, based on 
the idea of a logarithmic barrier path studied by Fiacco and 
McCormick (1990). 

On the other hand, computer simulation has become an 
indispensable tool for understanding the dynamics of complex 
industrial systems. Many successful businesses intensively use 
simulation for operational and strategic planning. Potential 
problems can be avoided by testing the operative and strategic 
business plans. Simulation, supported with animation, which 
demonstrates the operations of the modelled system, helps 
participants recognize the specifics of the presented system 
(Kljajic et al., 2006). Kljajic et al. (2000) describe the method-
ology and procedure of implementation of simulation methods 
in solving the decision-making problem in a medium-sized 
company in order to improve the operation planning and re-
engineering process. Multiple criteria decision methods of 
the simulation scenario evaluation for decision support in the 
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manufacturing system are described. The system described is 
based on the system dynamics methodology (Forrester, 1961) 
combined with discrete event simulation, connected with a 
group support system (GSS) and an expert system. In a fac-
tory which produces concrete goods, problems of production 
management occur, as well as prolonged delivery time due to 
increasing demand. The production performance described in 
the article was planned and simulated on the basis of present 
and expected future demand. The evaluation criteria and busi-
ness goals were gained by GSS methods in connection with 
the method of the Analytical Hierarchy Process (Saaty, 1990). 
It is often the case that simulation is combined with analytical 
approaches. Kljajic et al. (2001) describe an integrated simu-
lation system for decision support making in enterprise. The 
business aspect of the simulation system was described by the 
Forrester’s system dynamics, while the production aspect has 
been modelled using the discrete event simulation block dia-
gram technique and Petri Nets. Kljajic et al. (2002) describe 
an approach to using simulation and visualization of discrete 
event oriented simulation models for multi-criteria schedul-
ing optimization with genetic algorithms. The methodology 
provided the planner with a quick and efficient scheduling 
method for the production plan. The scheduling system is 
composed of a business information system; a database, a 
discrete event simulation model and a scheduling algorithm. 
By comparing various scheduling methods, it was established 
that the system utilizing genetic algorithms and simulation 
yielded from 5% to 15% better scheduling within a shorter 
time compared to manual scheduling. Genetic algorithms 
were also used in combination with simulation in Kofjač et al. 
(2008) in a real-case production optimization. Simulation is a 
powerful tool for modeling system dynamics. It can be applied 
to a variety of complex industrial systems. Finally, there are 
situations that cannot be modelled analyticaly. For example, 
in a plant where two overhead cranes operate simultaneously 
on the same rails, the daily output cannot be modeled unless 
the movement of the cranes is modeled. However, such traffic 
relies heavily on the coordination between the crane drivers, a 
set of rules and the large production traffic bellow the cranes 
(Welgama et al., 1996). 

5	 Conclusion

While an analytical method such as linear programming 
provides a solution at times, as in the bottleneck problem of 
the AOL booking system, the solution may be hard to imple-
ment. On the other hand, simulation proved to be an effective 
tool in the planning problem for the production and distribu-
tion of mining products. We make the point that, in complex 
industrial systems, simulation provides a better approach in 
designing and testing a solution. The fast paced and constantly 
changing reservation system prohibits a static mathematical 
formulation. Modern simulation software can handle the prob-
lem as long as good statistical input is provided. An analytical 
solution like linear programming can easily blow up in size 
and prohibit a realistic solution. Furthermore simulation pro-
vides a way to test the system for different forecasts, an issue 
of importance in most problems. A Monte Carlo approach is 

an effective approach to resolve serious issues in complicated 
setups. At times, there are complexities that simply cannot be 
modelled analyticaly but have a great impact on final assess-
ments. If care is taken in modelling the problem, simulation 
offers a better solution and often allows to consider changes as 
the solution develops. As shown using the two examples, some 
situations are best modeled using simulation.
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