Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams

Open access

Abstract

Photon beams with wide energy ranges from 4 MV to 25 MV are commonly used in radiotherapy nowadays. In recent years, there has been a strong interest in a certain modification of a radiotherapeutic apparatus by the application of the so-called flattening filter-free (FFF) beam. Several advantages of FFF beams over standard flattening filter (FF) beams are noticed, and this technical solution has aroused great interest among radiotherapeutic facilities. The goal of the present study is to investigate the differences between the conventional FF and unflattened FFF 6-MV and 10-MV photon beams in some basic dosimetric parameters and their influence on the whole radiotherapeutic treatment. The data provided here include the detailed characteristics as follows: percent depth dose (PDD), beam profile, edge of a half-profile, total scatter correction factor (TSCF) and head scatter correction factor (HSCF) for FF and FFF 6-MV and 10-MV photon beams from the Elekta Versa HD accelerator in the Katowice Oncology Center in Poland.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Cashmore J. (2008). The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys. Med. Biol.53(7) 1933–1946.

  • 2. Kragl G. af Wetterstedt S. Knausl B. Lind M. Mc- Cavana P. Knoos T. McClean B. & Georg D. (2009). Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radiother. Oncol.93(1) 141–146.

  • 3. Narayanasamy G. Saenz D. Cruz W. Ha C. S. Papanikolaou N. & Stathakis S. (2016). Commissioning an Elekta Versa HD linear accelerator. J. Appl. Clin. Med. Phys.17(1) 179–191.

  • 4. Riis H. L. Beierholm A. R. Zimmermann S. J. Helt-Hansen J. & Andersen C. E. (2014). Measuring output factors for flattening filter free beams: A case study of the Elekta Versa HD. In ESTRO-33 4–8 April 2014 Vienna Austria. (EP-1525).

  • 5. Paynter D. Weston S. J. Cosgrove V. P. Evans J. A. & Thwaites D. I. (2014). Beam characteristics of energy-matched flattening filter free beams. Med. Phys. 41 052103.

  • 6. Mohammed M. Chakir E. Boukhal H. Mroan S. & El Bardouni T. (2016). Evaluation of the dosimetric characteristics of 6 MV flattened and unflattened photon beam. Journal of King Saud University-Science29 371–379.

  • 7. Pichandi A. Ganesh K. M. Jerin A. Balaji K. & Kilara G. (2014). Analysis of physical parameters and determination of inflection point for flattening filter free beams in medical linear accelerator. Reports of Practical Oncology and Radiotherapy19 322–331.

  • 8. Ting J. (2012). Facts fiction and future of flattening filter free beams (FFF of FFF beams). In AAPM 54th Annual Meeting 27 July – 2 August 2012 Melbourne Australia. Available from https://www.aapm.org/meetings/2012AM/PRAbs.asp?mid=68&aid=19886.

  • 9. Fogliata A. Garcia R. Knoos T. Nicolini G. Clivio A. Vanetti E. Khamphan C. & Cozzi L. (2012). Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med. Phys. 39(10) 6455–6464.

  • 10. Vassiliev O. N. Titt U. Ponisch F. Kry S. F. Mohan R. & Gillin M. T. (2006). Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys. Med. Biol. 51 1907–1917.

  • 11. Duane S. (2013). Dosimetry for flattening filter free (FFF) linac beams and small fields (SF). National Physical Laboratory. Available from dl.icdst.org/pdfs/files2/58b4dd654592e98362ae5f3e87226fc1.pdf.

  • 12. Kry S. F. (2013). Flattening filter free accelerators. The University of Texas MD Anderson Cancer Center Radiological Physics Center. Available from www.medfys.no/nfmf-documents/Opplastet/downloads/2012/07/Kry_FFF.pdf.

  • 13. Xiao Y. Kry S. F. Popple R. Yorke E. Papanikolaou N. Stathakis S. Xia P. Huq S. Bayouth J. Galvin J. & Yin F. -F. (2015). Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J. Appl. Clin. Med. Phys.16(3) 12–29.

  • 14. Budgell G. Brown K. Cashmore J. Duane S. Frame J. Hardy M. Paynter D. & Thomas R. (2016). IPEM Topical Report 1: Guidance on implementing flattening filter free (FFF) radiotherapy. Phys. Med. Biol.61 8360–8394.

  • 15. Garcia R. (2011). Recommendations on QA of FFF beams. Berlin: Varian Oncology Summit.

  • 16. Podgorsak E. B. (2005). Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency.

  • 17. Ponisch F. Titt U. Vassiliev O. N. Kry S. F. & Mohan R. (2006). Properties of unflattened photon beams shaped by a multileaf collimator. Med. Phys. 33(6) 1738–1746.

  • 18. Followill D. Tailor R. Tello V. & Hanson W. (1998). An empirical relationship for determining photon beam quality in TG-21 from a ratio of percent depth doses. Med. Phys.25 1202–1205.

  • 19. Allen J. (2014). High dose rate mode (flattening filter free) radiotherapy. Clinical advantages of high dose rate mode available with Agility™ on Elekta’s Versa HD™ linear accelerator. Crawley: Elekta Ltd.

  • 20. van Gasteren J. J. M. Heukelom S. Jager H. N. Mijnheer B. J. van der Laarse R. van Kleffens H. J. Venselaar J. L. M. & Westermann C. F. (1998). Determination and use of scatter correction factors of megavoltage photon beams. Netherlands Commission on Radiation Dosimetry. (NCRD Report no. 12).

  • 21. Kry S. F. Vassiliev O. N. & Mohan R. (2010). Outof- field photon dose following removal of the flattening filter from a medical accelerator. Phys. Med. Biol. 55(8) 2155–2166.

  • 22. Cashmore J. (2013). Operation characterisation and physical modelling of unflattened medical linear accelerator beams and their application to radiotherapy treatment planning. Unpublished PhD Thesis University of Birmingham.

  • 23. Zhu T. C. (2012). Dosimetric challenge for flattening filter free (FFF) photon beams. In AAPM DVC Spring Symposium April 20 2012 Philadelphia USA. American Association of Physicists in Medicine.

  • 24. ICRU. (1999). ICRU Report 62: Prescribing recording and reporting photon beam therapy. (Supplement to ICRU Report 50). Journal of the ICRU32(1).

  • 25. Georg D. Knoos T. & McClean B. (2011). Current status and future perspective of flattening filter free photon beams. Med. Phys. 38 1280–1283.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513



CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 19
PDF Downloads 35 35 18