Effects of radiopharmaceuticals on articular cartilage’s mechanical properties

Open access


As radiation science and technology advances, nuclear medicine applications are increasing worldwide which necessitate the understanding of biological implications of such practices. Ionizing radiation has been shown to cause degraded matrix and reduced proteoglycan synthesis in cartilage, and the late consequences of which may include degenerative arthritis or arthropathy. Although degenerative effects of the ionizing radiation on cartilage tissue have been demonstrated, the effects on the mechanical properties of articular cartilage are largely unknown. The radiopharmaceuticals, technetium-99m and technetium-99m sestamibi, were utilized on bovine articular cartilage to investigate these effects. We used two different mechanical tests to determine the mechanical properties of articular cartilage. Dynamic and static mechanical tests were applied to calculate compressive modulus for articular cartilage. We observed clearly higher control modulus values than that of experimental groups which account for lesser stiffness in the exposed cartilage. In conclusion, compressive moduli of bovine articular cartilage were found to decrease after radiopharmaceutical exposure, after both instantaneous and equilibrium mechanical experiments.

1. Saintigny, Y., Cruet-Hennequart, S., Hamdi, D. H., Chevalier, F., & Lefaix, J. L. (2005). Impact of therapeutic irradiation on healthy articular cartilage. Radiat. Res., 183(2), 135–146. DOI: 10.1667/RR13928.1.

2. Padalkar, M. V., Spencer, R. G., & Pleshko, N. (2013). Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann. Biomed. Eng., 41(11), 2426–2436. DOI: 10.1007/s10439-013-0844-0.

3. Li, G., Thomson, M., Dicarlo, E., Yang, X., Nestor, B., Bostrom, M. P. G., & Camacho, N. P. (2005). A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy. Appl. Spectrosc., 59(12), 1527–1533. DOI: 10.1366/000370205775142593.

4. Baxter, N. N., Habermann, E. B., Tepper, J. E., Durham, S. B., & Virnig, B. A. (2005). Risk of pelvic fractures in older women following pelvic irradiation. JAMA, 294(20), 2587–2593. DOI: 10.1001/jama.294.20.2587.

5. Willey, J. S., Livingston, E. W., Robbins, M. E., Bourland, J. D., Tirado-Lee, L., Smith-Sielicki, H., & Bateman, T. A. (2010). Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone, 46(1), 101–111. DOI: 10.1016/j.bone.2009.09.002.

6. Kolár, J., Vrabec, R., & Chyba, J. (1967). Arthropathies after irradiation. J. Bone Joint Surg. Am., 49(6), 1157–1166. DOI: 10.2106/00004623-196749060-00013.

7. Lindburg, C. A., Willey, J. S., & Dean, D. (2013) Effects of low dose X-ray irradiation on porcine articular cartilage explants. J. Orthop. Res., 31(11), 1780–1785. DOI: 10.1002/jor.22406.

8. Hugenberg, S. T., Myers, S. L., & Brandt, K. D. (1989). Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation. Arthritis. Rheum., 32(4), 468–474. DOI: 10.1002/anr.1780320417.

9. Willey, J. S., Long, D. L., Vanderman, K. S., & Loeser, R. F. (2013). Ionizing radiation causes active degradation and reduces matrix synthesis in articular cartilage. Int. J. Radiat. Biol., 89(4), 268–277. DOI: 10.3109/09553002.2013.747015.

10. Lindburg, A. B., Willey, J. S., DesJardins, D. J., & Dean, D. (2011). Effect of X-ray irradiation on porcine and murine cartilage modulus. In Society for Biomaterials 2011 Annual Meeting and Exposition (abstract #794). Available from http://abstracts.biomaterials.org/data/papers/2011/794.pdf.

11. Yin, J., Xia, Y., & Lu, M. (2012). Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression. Spectroc. Acta Pt A-Mol. Biomolec. Spectr., 88, 90–96. DOI: 10.1016/j.saa.2011.12.002.

12. Long, D. L., & Loeser, R. F. (2010). P38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthr. Cartil., 18(9), 1203–1210. DOI: 10.1016/j.joca.2010.05.016.

13. Ailland, J., Kampen, W. U., Schünke, M., Trentmann, J., & Kurz, B. (2003). Beta irradiation decreases collagen type II synthesis and increases nitric oxide production and cell death in articular chondrocytes. Ann. Rheum. Dis., 62(11), 1054–1060. DOI: 10.1136/ard.62.11.1054.

14. Cicek, E., & Cakmak, E. (2018). Hydrogen peroxide induced oxidative damage on mineral density and mechanical properties of bone. Brazilian Archives of Biology and Technology, 61, e18180043. DOI: 10.1590/1678-4324-2018180043.

15. Cicek, E. (2016). Effect of X-ray irradiation on articular cartilage mechanical properties. Acta Phys. Pol. A, 129(2), 200–202. DOI: 10.12693/APhysPolA.129.200.


The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information

IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 0.509


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 40
PDF Downloads 64 64 29