Simulated nuclear contamination scenario, solid cancer risk assessment, and support to decision

Open access

Abstract

The detonation of an (hypothetical) improvised nuclear device (IND) can generate atmospheric release of radioactive material in the form of particles and dust that ultimately contaminate the soil. In this study, the detonation of an IND in an urban area was simulated, and its effects on humans were determined. The risk of solid cancer development due to radiation was calculated by taking into account prompt radiation and whole-body exposure of individuals near the detonation site up to 10 km. The excess relative risk (ERR) of developing solid cancer was evaluated by using the mathematical relationships from the Radiation Effects Research Foundation (RERF) studies and those from the HotSpot code. The methodology consists of using output data obtained from simulations performed with the HotSpot health physics code plugging in such numbers into a specific given equation used by RERF to evaluate the resulting impact. Such a preliminary procedure is expected to facilitate the decision-making process significantly.

1. Lugar, R. G. (2005, June). The Lugar survey on proliferation threats and responses. Available from https://fas.org/irp/threat/lugar_survey.pdf.

2. Reed, B. C. (2014). The history and science of the Manhattan project. Springer.

3. Mian, Z., & Glaser, A. (2015). Nuclear weapons and fissile material stockpiles and production. In NPT Review Conference, 27 April – 22 May 2015. New York, USA: United Nations. Available from http://www.princeton.edu/~aglaser/IT050-Mian-Glaser-NPT-New-York.pdf.

4. Bunn, M., & Wier, A. (2006). Terrorist nuclear weapon construction: How difficult? Ann. Am. Acad. Polit. Soc. Sci., 607(1), 133–149.

5. Potter, W. C., & Mukhatzhanova, G. (2010). Forecasting nuclear proliferation in the 21st century (Vol. 2). Stanford University Press.

6. Reed, B. C. (2011). Fission fizzles: Estimating the yield of a predetonated nuclear weapon. Am. J. Phys., 79(7), 769–773.

7. Marka, J. C. (1993). Explosive properties of reactor-grade plutonium. Science and Global Security, 4(1), 111–128. https://doi.org/10.1080/08929889308426394.

8. Garwin, R. L., & von Hippel, N. (2006). A technical analysis: Deconstructing North Korea’s October 9 nuclear test. Arm Control Association. Available from https://www.armscontrol.org/act/2006_11/tech.

9. Mazzetti, M. (2006, October 14). Preliminary samples hint at North Korean nuclear test. New York Times. Available from https://www.nytimes.com/2006/10/14/world/asia/14nuke.html.

10. Zhao, L. -F., Xie, X. -B., Wang, W. -M., & Yao, Z. -X. (2008). Regional seismic characteristics of the 9 October 2006 North Korean nuclear test. Bull. Seismol. Soc. Amer., 98(6), 2571–2589. doi: 10.1785/0120080128.

11. Poeton, R. W., Glines, W. M., & McBaugh, D. (2009). Planning for the worst in Washington State: initial response planning for improvised nuclear device explosions. Health Phys., 96(1), 19–26.

12. Florig, H. K., & Fischhoff, B. (2007). Individuals’ decisions affecting radiation exposure after a nuclear explosion. Health Phys., 92(5), 475–483.

13. Meit, M., Redlener, I., Briggs, T. W., Kwanisai, M., Culp, D., & Abramson, D. M. (2011). Rural and suburban population surge following detonation of an improvised nuclear device: a new model to estimate impact. Disaster Med. Public Health Prep., 5(Suppl. 1), S143–S150. https://doi.org/10.1001/dmp.2011.20.

14. Greenberg, M. R., & Lowrie, K. W. (2009). Risk analysis. Risk Anal., 29(3), 315–316.

15. Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., Sugimoto, S., Ikeda, T., Terasaki, M., Izumi, S., & Preston, D. L. (1994). Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat. Res., 137(2s), S17–S67.

16. Ron, E., Preston, D. L., Mabuchi, K., Thompson, D. E., & Soda, M. (1994). Cancer incidence in atomic bomb survivors. Part IV: Comparison of cancer incidence and mortality. Radiat. Res., 137(2s), S98–S112.

17. Mabuchi, K., Soda, M., Ron, E., Tokunaga, M., Ochikubo, S., Sugimoto, S., Ikeda, T., Terasaki, M., Preston, D. L., & Thompson, D. E. (1994). Cancer incidence in atomic bomb survivors. Part I: Use of the tumor registries in Hiroshima and Nagasaki for incidence studies. Radiat. Res., 137(2s), S1–S16.

18. Homann, S. G. (2013). HotSpot Health Physics Codes Version 3.0 User’s Guide. Lawrence Livermore National Laboratory, CA, USA.

19. Jones, A., Thomson, D., Hort, M., & Devenish, B. (2007). The UK Met Office’s next-generation atmospheric dispersion model, Name III. In C. Borrego, & A. -L. Norman (Eds.), Air pollution modeling and its application XVII (pp. 580–589). Springer.

20. Shin, H., & Kim, J. (2009). Development of realistic RDD scenarios and their radiological consequence analyses. Appl. Radiat. Isot., 67(7/8), 1516–1520.

21. Saint Yves, T. L. A., Carbal, P. A. M., Brum, T., Rother, F. C., Alves, P. F. P. M., Lauria, D. C., & de Andrade E. R. (2012). Terrorist radiological dispersive device (RDD) scenario and cancer risk assessment. Hum. Ecol. Risk Assess., 18(5), 971–983. https://doi.org/10.1080/10807039.2012.707926.

22. Onishchenko, G. G. (2007). Radiological and medical consequences of the Chernobyl atomic power station accident in the Russian Federation. Gig. Sanit., 4, 6–13 (in Russian).

23. Glasstone, S., & Dolan, P. J. (1977). The effects of nuclear weapons. Washington, DC: US Department of Defense.

24. Hendee, W. R. (1992). Estimation of radiation risks. BEIR V and its significance for medicine. JAMA, 268(5), 620–624.

25. Preston, D. L., Kusumi, S., Tomonaga, M., Izumi, S., Ron, S., Kuramoto, A., Kamada, N., Dohy, H., Matsui, T., Nonaka, H., Thompson, D. E., Soda, M., & Mabuchi, K. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res., 137(2s), S68–S97.

26. Charles, M. (2001). UNSCEAR Report 2000: sources and effects of ionizing radiation, United Nations Scientific Comittee on the Effects of Atomic Radiation. J. Radiol. Prot., 21(1), 83–86.

27. Socol, Y., & Dobrzynski, L. (2015). Atomic bomb survivors life-span study: Insufficient statistical power to select radiation carcinogenesis model. Dose-Response, 13(1), (17 pp.). DOI: 10.2203/doseresponse.14-034.Socol.

28. Mettler, F. A. (2012). Medical effects and risks of exposure to ionising radiation. J. Radiol. Prot., 32(1), N9–N13.

29. International Atomic Energy Agency. (1996). Methods for estimating the probability of cancer from occupational radiation exposure. Vienna: IAEA. (IAEA-TECDOC-870).

30. National Research Council. (2006). Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2 (Vol. 7). Washington, DC: The National Academies Press. https://doi.org/10.17226/11340.

31. Kendall, G. M., Muirhead, C. R., MacGibbon, B. H., O’Hagan, J. A., Goodill, A. A., Butland, B. K., Fell, T. P., Jackson, D. A., & Webb, M. A. (1992). Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ, 304(6821), 220–225.

32. Wolbarst, A. B., Wiley, A. L., Nemhauser, J. B., Christensen, D. M., & Hendee, W. R. (2010). Medical response to a major radiologic emergency: A primer for medical and public health practitioners. Radiology, 254(3), 660–677. https://doi.org/10.1148/radiol.09090330.

33. Andresz, S., Morgan, J., Croüail, P., & Vermeersch, F. (2018). Conclusions and recommendations from the 17th Workshop of the European ALARA Network ‘ALARA in emergency exposure situations’. J. Radiol. Prot., 38(1), 434–439.

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information


IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610



CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 53
PDF Downloads 65 65 18