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Introduction 

Hall effect thruster (HET) is a plasma accelerator 
with magnetized electrons in which ions that pro-
duce the thrust are sped-up by electric fi eld E that 
is maintained in the discharge volume owing to the 
presence of perpendicular magnetic fi eld B [1]. 

Since the fi rst launch of a HET fl ight-model at 
the Russian satellite of Meteor series [2] the electric 
propulsion (EP) has well established its competitive 
position with respect to the classic rocket engines 
of combustion and cold gas type. Due to the several 
times higher specifi c impulse generated by most EP 
technologies, the mass budget of a small spacecraft 
could be optimized leaving more room for the mis-
sion payload. HETs have already proved their su-
perior capabilities when applied for station keeping 
or orbit rising, and are more and more frequently 
being considered as the main engines for future deep 
space missions. A worthy example that illustrates 
such a task feasibility is the Small Mission for Ad-
vanced Research in Technology 1 (SMART-1) ESA 
project, which had the purpose to test several new 
techniques, as well as provide for the observation of 
lunar surface. The SMART-1 satellite was equipped 
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with xenon Hall effect thruster which increased the 
craft speed by V  3.8 km/s. It resulted in entering 
a lunar orbit in 2004. That successful mission lasted 
till 2006 [3].

The main goal of the KLIMT project was to fi gure 
out if the effi ciency of a relatively small HET that 
is supplied with krypton is comparable with the ef-
fi ciency produced when xenon propellant is used, 
and if krypton could indeed be considered as a cost-
-effective alternative for fueling Hall thrusters of the 
given size and power class. At the project guidelines 
formulation phase, it was accepted that the gradually 
improved implementation of the new engine should 
be a laboratory/research model of modular structure 
aimed at the selection of the most effi cient confi gu-
ration. However, while designing the new thruster, 
several tasks like magnetic fi eld optimization and 
effi cient heat-load handling had to be addressed, 
despite the fact that KLIMT’s architecture has re-
lied on the well-known idea of Hall effect thruster 
(as described below) [1, 4, 5]. In case of KLIMT, 
the optimization consisted of numerical modelling, 
as well as series of experiments. Accordingly, three 
subsequent prototype versions of KLIMT have been 
designed and tested to improve the fi nal implementa-
tion and to complete the project goals. The relevant 
test campaigns were arranged in the ESA Propulsion 
Laboratory (EPL) of ESTEC (Noordwijk, the Neth-
erlands), as well as in the IPPLM’s own Laboratory 
for Satellite Plasma Thrusters (PlaNS). 

In most of HETs, the plasma discharge is ignited 
inside the annular dielectric channel. The anode, 
which is usually a distributor of neutral gas, is 
placed at the bottom of this channel. The cathode 
is placed outside the channel, close to its open end 
which makes the thruster exit plane (see Fig. 1). The 
electrodes are biased with DC voltage (typically of 
~300 V). The set-up axial electric fi eld E drives the 
electrons emitted by the cathode towards the chan-
nel. In the vicinity of its exit plane, the electrons 
encounter radial magnetic fi eld B produced by the 
electromagnets. The fi eld B is strong enough to 
trap the electrons prior to entering the anode. The 
magnetized electrons drift azimuthally in crossed 
E and B fi elds, inducing a circular Hall current [5] 
close to the thruster exit plane. The neutral particles 

of gas ejected through the anode are effectively ion-
ized in collisions with the drifting electrons, which 
due to the impact with atoms and channel walls 
diffuse towards the anode. The axial electric fi eld 
accelerates ions downwards the thruster channel, 
producing thrust. The expelled ions capture addi-
tional electrons emitted by the cathode, keeping the 
thruster electrically neutral. The effect of magnetic 
fi eld on ion trajectories is negligible. 

KLIMT was assumed to be a ~500 W class Hall 
thruster with elongated acceleration/ionization zone 
[4] and concentric magnetic coils (external with 
respect to the internal). The radial scaling down 
[6–8] relevant to the state-of-the-art SPT100 model 
design and photographic scaling of its magnetic fi eld 
topography was applied. Nevertheless, the maximum 
value of magnetic induction Bmax in the channel was 
increased up to ~0.025 T to better satisfy RL<<(bch 
and Li) relation, where RL is the Larmor radius of 
electrons, bch is the discharge channel width and 
Li is the ionization length. For more details on the 
thruster design guidelines and their implementa-
tion, the reader is kindly refereed to our previous 
papers [9, 10]. Just for clarity, the basic KLIMT’s 
parameters are summarized in Table 1. 

It was demonstrated that Hall thruster can 
operate being fueled with various gases [11, 12]. 
However, xenon is considered to be an almost ideal 
propellant that provides high HET’s effi ciency. It is 
due to this noble gas high ionization cross section 
and atomic mass (131.3 u), as well as low ionization 
energy (12.13 eV). Moreover, xenon is chemically 
neutral and does not contaminate any surface. These 
attributes make xenon a great EP propellant, but un-
fortunately, its occurrence in the Earth’s atmosphere 
is very low, which results in its extremely high price. 
Krypton’s physical characteristics (lower ionization 
cross section, ionization potential of 13.5 eV and 
Table 1. KLIMT’s parameters 

Geometry Operating parameters 
Dout = 50 mm UD  500 V
Din = 34 mm ID  2.0 A
bch = 8 mm PD  0.5 kW
Lch = 12–35 mm B0 = 150–250 Gs, dm/dt  1.5 mg/s

a b

Fig. 1. KLIMT 2nd version: (a) cross section – out of the scale, (b) as operating with krypton in PlaNS laboratory. 
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atomic mass of 83.8 u) presumed it to be less favour-
able. Nevertheless, krypton has one advantage – its 
cost per mass unit is about 5 times lower than that 
of xenon; and, while discussing the space mission 
economy, this fact may be the deciding factor to use 
this slightly less effi cient propellant [13]. 

Heat problem 

Even the early studies support the general idea that 
krypton HET performance could be on-par with the 
xenon thruster, if the mass fl ow rate of Kr is kept at 
the same or increased level as compared to Xe [14, 
15]. The increased number density of krypton in the 
discharge channel is able to compensate for its low 
ionization cross section and improve the mass uti-
lization. However, the discharge current and power 
also increase leading to the growth in the thruster 
heat loads. It is illustrated in Fig. 2, in which the 
numerically calculated values of discharge and ion 
currents are depicted for both gases. The simula-
tions were performed with the use of the HETMAn 
1D hydrodynamic code [16] applied for KLIMT 
performance estimation [17]. Similar results are 
observed in the experiments [18]. It is worthwhile 
to note that according to our calculations, the effect 
of the channel length is of secondary importance, if 
the mass fl ow rate is big enough (see Fig. 2). 

In the small krypton HET, the increased heat 
loads are due not only to the choice of the propel-
lant, but also to scaling down the thruster. In HET, 
without the active cooling system, the only way to 
evacuate the excessive Joule heating is radiation. 
However, fi rstly the heat energy released inside the 
thruster has to be transferred to the radiating sur-
faces. Providing this transfer effectively was one of 
the main challenges for the KLIMT’s design. To as-
sess the increased heat loads and thermal behaviour 
of each new version, extensive calculations of the 
temperature fi eld inside the thruster were performed 
[9, 18] prior to the manufacturing of  individual 
parts. The expected temperature distribution in the 
KLIMT’s body was modelled with two simulating 
tools – heat module of the public domain FEMM 
code (Finite Element Method Magnetics) [19] 

and the CRATHER code (un Code de Conduction-
RAdiation THERmique) [20]. 

The inner structure of the KLIMT’s body consists 
of concentric elements fi xed to the thruster bottom 
(see Fig. 3) which is linked to the radiator. A reli-
able thermal interface between these elements and 
the bottom must be assured to set up a heat sink 
and provide for effi cient cooling. Additionally, for 
the inner radiative transfer improvement, the effect 
of a vacuum fl ask that results between concentric 
surfaces should be minimized. In simulations, heat 
transfer due to conduction as well as radiation was 
considered. However, while in the CRATHER code, 
radiation between inner surfaces is fully supported 
(with correctly calculated relevant view factors), 
the FEMM code allows only for setting radiative 
boundary conditions (at the external surfaces). On 
the other hand, in FEMM, the heat conduction is 
addressed more consistently than in CRATHER. 
That is why to model the internal radiative transfer 
within the FEMM, a virtual material between radi-
ating surfaces was introduced as mentioned in our 
previous paper [9]. 

Fig. 2. Comparison of the discharge current ID for xenon and krypton propellants as calculated with HETMAn simulat-
ing tool. Ion current fraction Ii is also depicted. Calculations are parametrized with the discharge channel length Lch. 

Fig. 3. Comparison of the temperature distributions as 
calculated with FEMM (the left profi le) and CRATHER 
(the right profi le) codes. It was assumed that heat source 
(plasma) was uniformly distributed at the last 10 mm of 
the inner and outer surfaces of the discharge channel. 
Please note the temperature distribution in the artifi cial 
material fi lling the empty cavities.
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Let us assume that a cylinder of radius r1, emis-
sivity 1 and temperature T1 generates heat fl ux q12 
towards the concentric cylinder of radius r2, emis-
sivity 2 and temperature T2. Assuming that both 
cylinder lengths L >> r1 and r2 = r1(1 + ), where 
 << 1, which is well satisfi ed inside the KLIMT 
body, the view factor of the infi nite cylinders can 
be used and with a good accuracy the well-known 
formula reads [21]: 

(1)

where  is Stefan-Boltzmann constant. 
Applying now Fourier law in cylindrical symme-

try, heat conductivity (T) of that virtual material 
can be deduced from the equation: 

(2)  q12r1 = –(T)rdT/dr

The simple integration results in the formula: 

(3)

where 

is the heat potential for which T0 is an arbitrary 
reference temperature. Finally: 

(4)

Similar calculations can be done for T2 > T1 and 
the parallel fl at surfaces using appropriate view 
factors and the problem symmetry. The relevant 
non-linear heat conductivity ‘coeffi cients’ were cal-
culated for the inner KLIMT’s cavities and added to 
the FEMM’s database as new materials. This method 
has been applied for each KLIMT’s instance since 
the heat loads assessment of the fi rst version [9]. An 

exemplary temperature distribution, as calculated 
with FEMM and CRATHER for the fi rst prototype, 
is reproduced in Fig. 3. The agreement of both cal-
culations is satisfactory. The results indicate that 
the temperature of the most sensitive elements of 
magnetic circuit is lower than Curie value. Conse-
quently, the actual magnetic fi eld distribution of the 
operating thruster should be close to the assumed 
during the design phase. It was verifi ed when B fi eld 
distribution was modelled with FEMM, applying 
the temperature dependent magnetization curves 
(for the hottest elements of the magnetic circuit, 
i.e., for the poles) (see Fig. 4). Nevertheless, for 
all-iron magnetic circuit, the thermal degradation of 
the magnetic fi eld distribution may be signifi cant 
and manifest at lower temperature than for magnetic 
circuit with elements made of FeCo alloy. 

Accordingly, in the heat loads modelling, the 
temperature of the most sensitive parts of thruster, 
that is windings of the magnetic coils (made of 
Kulgrid 28 high temperature wire [24]), should not 
exceed in experiment the temperature limit which is 
of ~500°C. However, in practice, the magnetic coils 
of the fi rst and second prototypes got extremely high 
temperature before the thruster reached thermal sta-
bility. The issue was correctly addressed and solved 
in the third version of thruster. 

Test results 

The lessons learned from each measurement cam-
paign provided a feedback for the next design phase. 
The results of tests that were performed in both labo-
ratories (EPL and PlaNS) confi rmed the correctness 
of the main assumptions to the new thruster archi-
tecture. However, it clearly appeared that the design 
of some elements of the magnetic circuit should be 
corrected. To make the magnetic circuit thermally 
stable and resistant to the increased heat loads, in 
the second version, its hottest elements were re-
placed by parts made of FeCo alloy [18] with Curie 
temperature about 200 K higher than the soft iron. 
In the third version, all the thermal interfaces were 
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refi ned, while the radiated surfaces blackened to 
increase effectiveness of cooling by radiation and to 
reduce the vacuum fl ash effect. New solution for the 
internal heat guides and screens (thermal and mag-
netic ones) was implemented. These improvements 
resulted in the new structure of the magnetic circuit, 
however, the topology of B fi eld was preserved [18]. 
The effectiveness of the modifi ed thermal layout 
was confi rmed numerically. Due to the introduced 
modifi cations, the outer diameter of the thruster and 
its length (as well as the length of BN channel) were 
both reduced by ~1 cm, decreasing the total weight 
of the thruster. Finally, the third prototype turned 
out to be thermally stable, and all its characteristics 
were measured at the well-established equilibrium 
temperature. 

Nevertheless, the thermal equilibrium of both 
the prototype versions could not be gained within 
the safety limits of the coils. Therefore, to make the 
interpretations of early tests more straightforward, 
the measurements were performed with the tem-
perature of the thruster strictly controlled. The inner 
and outer coil temperatures were determined relying 
on their resistivity variation during the operation. 
A linear temperature relation for specifi c resistance 
of the Klugrid 28 wire was assumed based on the 
producer data-sheet [24]. The recording coil current 
Ic and voltage Uc, knowing the coil resistivity Rref in 
reference to the temperature Tref, as well as cables 
resistivity Rcab, one can calculate the coil temperature 
Tc with the simple formula: 

(5)

where Tlab is the temperature of laboratory and  
is the temperature coeffi cient of resistance. Tlab, 
Rcab and  were assumed to be constant during the 
measurements. 

By its physics, the HET continues to operate as 
long as it is supplied with voltage and propellant. 
However, KLIMT was intentionally switched off 
always when the inner coil temperature came too 
close to the limit of 500°C [10]. 

Approaching thermal equilibrium by the third 
prototype for krypton and xenon is illustrated in 
Fig. 5. For comparison, the temperature variations 
of second prototype during its operation are also de-

picted. The second prototype was operated only with 
krypton. Please note that for krypton, the fl ow rate of 
21.6 sccm temperature increases much faster than 
for 17.2 sccm, despite the fact that discharge voltage 
is kept at the same level. It is obvious, since with 
the increased krypton number density, the discharge 
current and power also increases resulting in the 
growth of Joule heating. The second prototype had 
to be switched off prior to getting damaged due to 
overheating, usually after 1–1.5 hour of operation. 

Testing the thruster performance prior to gaining 
thermal equilibrium, the impact of temperature had 
to be examined. Studying KLIMT’s performance in 
PlaNS laboratory, we were not able to measure the 
thrust in an absolute manner (such measurements 
were performed for KLIMT only in EPL). Instead, 
we captured the plasma jet with a graphite target 
that was placed at the thrust balance. The resulting 
force F produced by the momentum fl ux was as-
sumed to be proportional to the thrust. The method 
is somehow similar to that described in paper [25]. 
The variations of F vs. inner coil temperature is 
reproduced in Fig. 6. Additionally, the discharge 
current is depicted in the same fi gure. It is clearly 
seen that both characteristics slowly decrease with 
the growth of thruster temperature. Permanent 
monitoring of temperature allowed us for consistent 
comparison of thruster characteristics when it was 
operating even in transient states. 

To better prepare the third measurement cam-
paign in EPL, an introductory session in PlaNS 

Fig. 5. Inner and outer (dashed) coil temperature vs. operation time for the last two prototypes. 

Fig. 6. Momentum fl ux (denoted with •) as captured by 
graphite target placed at the thrust balance and discharge 
current (Z) vs. temperature of inner coil. 
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laboratory was arranged with the aim at preliminary 
characterization of the fi nal KLIMT’s version. When 
probing its operational envelope, more than two hun-
dred set-points were examined. Accordingly, the mass 
fl ow rates, discharge voltage and coil currents were 
varied in the wide range, while relevant discharge 
currents (time dependent and averaged), as well as 
momentum fl ux to the graphite target were recorded. 
The preliminary measurements were repeated in EPL, 
however, only for precisely the selected set of operat-
ing conditions, at which the absolute thrust values 
were recorded for both gases. Additionally, beam 
divergence was measured, but only for krypton [18]. 

In EPL, the thruster thermal state was monitored 
relying not only on the resistivity variation of both 
coils (Eq. (5)) but also by means of K-type thermo-
couples. They were used for temperature measure-
ment of the thruster radiator, external core of mag-
netic circuit and gas insulator in the anode line. The 
results as recorded during the one-day experiment 
are presented in Fig. 7. In the same fi gure, the rel-
evant record of thrust balance was also reproduced. 
It illustrates the duration of switching on-off cycles 
which were applied to measure the thrust magnitude 
at the background of the long term drift of the thrust 
balance. Fast temperature variations are obviousl y 
coherent with the operating cycles of the thruster. 
Slow temperature changes are relevant to systematic 
variations of the operating conditions that were 
intentionally modifi ed during the measurements. It 
is worth noting that the temperature of the external 
parts of the thruster (in its thermally stable version) 
was at least two times lower than the temperature 
of the inner coil (compare Fig. 5 and Fig. 6), which 
in turn was always lower at least by 100°C than the 
safety limit. 

Conclusions 

The aim of Hall effect Krypton Large IMpulse 
Thruster (KLIMT) project was the assessment of 
krypton as a propellant when used alternatively to 
xenon. The new thruster has been designed from the 
ground up resulting in manufacturing of the three 

prototype versions. The results of the thruster perfor-
mance comparative tests were presented elsewhere 
[18]. Here, we focused on thermal stability of the 
new design. The presented test results show that in-
creased heat loads, which are an inherent feature of 
the krypton thruster, have been correctly addressed 
in the KLIMT’s fi nal version. It means that the mate-
rials as selected for the magnetic circuit, heat guides, 
coils and insulators appeared to be chosen properly. 
The effectiveness of heat excess evacuation from 
the thruster interior to the dedicated radiator was 
demonstrated (by experimental characterization). 
The improvement of thermal interfaces provided 
for thruster operation within the safety limits even 
of the most sensitive materials. The fi nal version 
turned out to be thermally stable for all the given 
operating conditions and worked with krypton reli-
ably as long as it was required. One can conclude 
that krypton could be seriously considered as an 
alternative propellant for HET. 
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