Nuclear fusion and its large potential for the future world energy supply

Open access

Abstract

An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc.) or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

1. United Nations. (2013). World population prospects: the 2012 revision. New York: UN. Retrieved from https://esa.un.org/unpd/wpp/publications/Files/WPP2012_HIGHLIGHTS.pdf.

2. U.S. Energy Information Administration. (2015). International energy statistics. Retrieved from http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm.

3. MacKay, D. J. C. (2009). Sustainable energy - without the hot air. Cambridge, UK: UIT. Retrieved from www. withouthotair.com.

4. Kleemann, M. (1991). Aktuelle wirtschaftliche und ökologische Probleme bei der Nutzung regenerativer Energiequellen. Elektrowärme Int., 49(A2), A62-A70.

5. UK Parliamentary Offi ce of Science and Technology. (October 1, 2006). Carbon footprint of electricity generation. (POSTnote 06/268). Retrieved from http://researchbriefings.parliament.uk/ResearchBriefing/Summary/POST-PN-268.

6. China: Villagers protest at Zhejiang solar panel plant. (September 16, 2011). BBC News. Retrieved from http://www.bbc.co.uk/news/world-asia-pacific-14963354.

7. Miller, L. M., Gans, F., & Kleidon, A. (2011). Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dynam., 2, 1-12.

8. Jefferson, M. (2011). Energy efficiency and sustainability. In Proceedings of the 44th Session of the International Seminar on Nuclear War and Planetary Emergencies, Erice (Italy), August 19-24, 2011.

9. Frondel, M., Ritter, N., Schmidt, C. M., & Vance, C. (2010). Economic impacts from the promotion of renewable energies: The German experience. Energy Policy, 38, 4048-4056.

10. Poser, H., Altman, J., ab Egg, F., Granata, A., & Board, R. (July 2014). Development and integration of renewable energy: lessons learned from Germany. Aldiswil, Switerland: Finadvice. Retrieved from http://www.finadvice.ch/files/germany_lessonslearned_final_071014.pdf.

11. Atzeni, S., & Meyer-ter-Vehn, J. (2004). The physics of inertial fusion: Beam plasma interaction, hydrodynamics, hot dense matter (Chapter 1). Oxford: Clarendon Press. Retrieved from http://fdslive.oup.com/ www.oup.com/academic/pdf/13/9780198562641.pdf.

12. Angulo, C., Arnould, M., Rayet, M., Descouvemont, P., Baye, D., Leclercq-Willain, C., Coc, A., Barhoumi, S., Aguer, P., Rolfs, C., Kunz, R., Hammer, J. W., Mayer, A., Paradellis, T., Kossionides, S., Chronidou, C., Spyrou, K., Degl’Innocenti, S., Fiorentini, G., Ricci, B., Zavatarelli, S., Providencia, C., Wolters, H., Soares, J., Grama, C., Rahighi, J., Shotter, A., & Lamehi Rachti, M. (1999). A compilation of chargedparticle induced thermonuclear reaction rates. Nucl. Phys. A, 656(1), 3-183.

13. Knaster, J., Arbeiter, F., Cara, P., Favuzza, P., Furukawa, T., Groeschel, F., Heidinger, R., Ibarra, A., Matsumoto, H., Mosnier, A., Serizawa, H., Sugimoto, M., Suzuki, H., & Wakai, E. (2013). IFMIF: overview of the validation activities. Nucl. Fusion, 53(11), 116001.

14. Knaster, J., Ibarra, A., Abal, J., Abou-Sena, A., Arbeiter, F., Arranz, F., Arroyo, J. M., Bargallo, E., Beauvais, P. -Y., Bernardi, D., Casal, N., Carmona, J. M., Chauvin, N., Comunian, M., Delferriere, O., Delgado, A., Diaz-Arocas, P., Fischer, U., Frisoni, M., Garcia, A., Garin, P., Gobin, R., Gouat, P., Groeschel, F., Heidinger, R., Ida, M., Kondo, K., Kikuchi, T., Kubo, T., Le Tonqueze, Y., Leysen, W., Mas, A., Massaut, V., Matsumoto, H., Micciche, G., Mittwollen, M., Mora, J. C., Mota, F., Nghiem, P. A. P., Nitti, F., Nishiyama, K., Ogando, F., O’hira, S., Oliver, C., Orsini, F., Perez, D., Perez, M., Pinna, T., Pisent, A., Podadera, I., Porfi ri, M., Pruneri, G., Queral, V., Rapisarda, D., Roman, R., Shingalam, M., Soldaini, M., Sugimoto, M., Theile, J., Tian, K., Umeno, H., Uriot, D., Wakai, E., Watanabe, K., Weber, M., Yamamoto, M., & Yokomine, T. (2015). The accomplishment of the engineering design activities of IFMIF/EVEDA: The European-Japanese project towards a Li(d,xn) fusion relevant neutron source. Nucl. Fusion, 55(8), 086003.

15. Maisonnier, D., Cook, I., Sardain, P., Andreani, R., Di Pace, L., Forrest, R., Giancarli, L., Hermsmeyer, S., Norajitra, P., Taylor, N., & Ward, D. (2005, April 13). A conceptual study of commercial fusion power plants. Final report of the European Fusion Power Plant conceptual study (PPCS). (EFDA-RP-RE-5.0).

16. Keilhacker, M., Gibson, P., Gormezano, C., Lomas, P. J., Thomas, P. R., Watkins, M. L., Andrew, P., Balet, B., Borba, D., Challis, C. D., Coffey, I., Cottrell, G. A., De Esch, H. P. L., Deliyanakis, N., Fasoli, A., Gowers, C. W., Guo, H. Y., Huysmans, G. T. A., Jones, T. T. C., Kerner, W., König, R. W. T., Loughlin, M. J., Maas, A., Marcus, F. B., Nave, M. F. F., Rimini, F. G., Sadler, G. J., Sharapov, S. E., Sips, G., Smeulders, P., Söldner, F. X., Taroni, A., Tubbing, B. J. D., von Hellermann, M. G., Ward, D. J., & JET Team. (1999). High fusion performance from deuterium-tritium plasmas in JET. Nucl. Fusion, 39(2), 209-234.

17. Jacquinot, J., & JET Team. (1999). Deuterium-tritium operation in magnetic confinement experiments: results and underlying physics. Plasma Phys. Control. Fusion, 41(3A), A13.

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information


IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610



CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 0.509

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 759 733 79
PDF Downloads 530 521 54