Diagnostic systems for the nuclear fusion and plasma research in the PF-24 plasma focus laboratory at the IFJ PAN

Open access


This paper presents a set of diagnostics dedicated to PF-24 - new medium size - plasma focus (PF) device built and operated at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN). The PF-24 can operate at energy level up to 93 kJ and charging voltage up to 40 kV. Each condenser is connected with a specially designed spark gap with a very small jitter, which ensures a high effi ciency and a low current rise time. The working parameters of PF-24 generator make it a suitable tool for testing new detection systems to be used in fusion research. Four types of such detection systems are presented in this article: three diagnostic systems used to measure electric quantities (Rogowski coil, magnetic probe, capacitance probe), neutron counter based on beryllium activation, fast neutron pinhole camera based on small-area BCF-12 plastic scintillation detectors and high-speed four-frame soft X-ray camera with microchannel plate.

1. Petrov, P. P., Filippov, N. V., Filippova, T. I., & Khrabrov, V. A. (1960). Powerful pulsed gas discharges in chambers with conducting walls. In M. A. Leontovich (Ed.), Plasma physics and the problem of controlled thermonuclear reactions (Vol. 4, pp. 198-212). New York: Pergamon Press.

2. Filippov, N. V., Filippova, T. I., & Vingredov, V. P. (1962). Dense, high-temperature plasma in a noncylindrical Z-pinch compression. Nucl. Fusion Suppl., 2, 577-587.

3. Mather, J. W. (1964). Investigation of the high-energy acceleration mode in the coaxial gun. Phys. Fluids, 7(11), S28-S34. DOI: 7/11/10.1063/1.1711086.

4. Mather, J. W. (1965). Formation of a high-density deuterium plasma focus. Phys. Fluids, 8(2), 366-377. DOI: 8/2/10.1063/1.1761231.

5. Herold, H., Jerzykiewicz, A., Sadowski, M., & Schmidt, A. (1989). Comparative analysis of large plasma focus experiments performed at IPF. Stuttgart, and IPJ, Świerk. Nucl. Fusion, 29(8), 1255-1266. DOI: 10.1088/0029-5515/29/8/002.

6. Bernard, A., Bruzzone, H., Choi, P., Chuaqui, H., Gribkov, V., Herrera, H., Hirano, K., Krejci, A., Lee, S., Luo, C., Mezzetti, F., Sadowski, M., Schmidt, H., Ware, K., Wong, C. S., & Zoita, V. (1998). Scientifi c status of plasma focus research. J. Moscow Phys. Soc., 8, 93-170.

7. Scholz, M., Karpinski, L., Krauz, V. I., Kubes, P., Paduch, M., & Sadowski, M. J. (2012). Progress in MJ plasma focus research at IPPLM. Nukleonika, 57(2), 183-188.

8. Krauz, V., Mitrofanov, K., Myalton, V., Koidan, V., Mokeev, A., Vinogradov, V., Vinogradova, Yu., Scholz, M., Paduch, M., Karpinski, L., Zielinska, E., & Kubes, P. (2013). Recent results of studies of magnetic fi eld distribution and neutron scaling on PF-1000 and PF-3 facilities. Probl. At. Sci. Tech., 83, 114-118.

9. Scholz, M., Marciniak, L., Kulinska, A., Karpinski, L., Igielski, A., Wojcik-Gargula, A., Bielecki, J., Krol, K., & Drozdowicz, K. (2016). Initial results from PF-24 - a 100 kJ Plasma Focus device. IEEE Trans. Plasma Sci. (submitted).

10. Scholz, M. (2014). Plasma-focus and controlled nuclear fusion. Habilitation dissertation. Kraków: Institute of Nuclear Physics PAN.

11. Bieńkowska, B., Prokopowicz, R., Scholz, M., Kaczmarczyk, J., Igielski, A., Karpinski, L., Paduch, M., & Pytel, K. (2014). Neutron counter based on beryllium activation. AIP Conf. Proc., 1612, 105-108.

12. Bielecki, J., Wojcik-Gargula, A., Wiacek, U., Scholz, M., Igielski, A., Drozdowicz, K., & Woznicka, U. (2015). A neutron pinhole camera for PF-24 source: Conceptual design and optimization. Eur. Phys. J. Plus, 130(7), 145. DOI: 10.1140/epjp/i2015-15145-x.

13. Kasperczuk, A., Paduch, M., Tomaszewski, K., Zielinska, E., Miklaszewski, R., & Szymaszek, A. (2016). A plasma focus device as a metallic plasma jet generator. Laser Part. Beams, 34(2), 356-361. DOI: 10.1017/ S0263034616000215.


The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information

IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 0.509

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 16
PDF Downloads 100 100 9