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Introduction

Data acquired in magnetic resonance imaging (MRI) 
is a function X:R3  C describing magnetic prop-
erties of the matter in space. Protons are of main 
interest, characterized by their magnetic moment, 
processing in the constant magnetic fi eld B0 with 
Larmor frequency  = –B0, where  is a gyromag-
netic ratio. Obtaining the signal from many protons 
requires the differentiation of their precession 
frequencies. To do so, gradient magnetic fi elds G: 
[0,T]  R3 are applied, defi ning k-space sampling 
trajectories: 

(1) 

Acquired signal is the Fourier transform of the 
magnitude of MR image 

(2) 

sampled along the trajectories k(t), as shown in 
Fig. 1 [1]. Due to physical restrictions, we need 
more than one trajectory to sample the whole 
k-space. Discretization is required and in conse-
quence Nyquist sampling rate must be satisfi ed. 
It results in long signal acquisition and low image 
resolution. At the same time, the data is compress-
ible, which allows us to utilize a recently developed 
technique, called compressed sensing (CS). 

Image acquisition process in MRI, based on 
Fourier transform, is linear. The task is then to 
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solve the system of linear equations x = y, where 
x  Cn is MR signal, y  Cm is a vector of samples 
and   Cm.n is a measurement matrix [2]. When 
m < n, such a system is underdetermined, which 
means that if there exists at least one solution, then 
the system has infi nitely many solutions. To have 
a single unique solution, we require m to satisfy 
m  n. On the other hand, we would like m to be low-
er than the number of samples required by Nyquist 
rate, n. Compressed sensing theory provides stable 
algorithms that allow us to uniquely reconstruct 
x  Cn from m << n samples for some special classes 
of signals, called sparse signals.

Compressed sensing – mathematical preliminaries 

Compressed sensing theory is based on sparsity of 
the signal, as was shown in [2]. 

Defi nition 1. Let ||x||0 denote a number of non-
-zero elements of a vector x. Signal x  Cn is called 
s-sparse if ||x||0  s. 

Theorem 1. Signal ||x||0 is a unique s-sparse solu-
tion to the system y = z if and only if it is a unique 
solution to the l0-minimization problem 

(3) 

Most of the real-life signals are sparse or com-
pressible (‘nearly sparse’) in their original base or in 
some representation (i.e. wavelet transform). So, if 
it is possible to discard most of the data without any 
loss of information, then it is unnecessary to acquire 
so much data. It is visible in magnetic resonance 
imaging (MRI), which is both time-consuming and 
compressible (Fig. 2). 

Unfortunately, l0-minimization problem is NP-
-hard. Consider a convex minimization problem 
(called l1-minimization): 

(4) 

There are certain conditions under which both 
problems are equivalent, known under the name null 
space property [3]. 

Defi nition 2. We say that   Cm.n satisfi es null 
space property (NSP) of order s if ||xS||0 < ||xSc||1 
for all subsets S  {1, …, n}, #S  s, and all vectors 
x  ker\{0}, where Sc = {1, …, n}\S. 

Theorem 2. Let   Cm.n denote a measurement 
matrix. Any s-sparse vector x  Cn is a unique so-
lution to the problem (4) if and only if  satisfi es 
NSP of order s. 

For such , the solution of (4) solves also the 
problem (3). While it is computationally complex 
to show that matrix satisfi es NSP, there is another 
property that allows to fi nd a solution to the regarded 
problem. It is called restricted isometry property [4]. 

Defi nition 3. The s-th restricted isometry constant 
s of   Cm.n is the smallest s  0 such that for all 
s-sparse vectors x  Cn 

(5) 

We say that  satisfi es restricted isometry prop-
erty (RIP) if s is small for reasonably large s. 

Theorem 3. Let 2 < 2 – 1. If x# is the solution 
to (4) then 

(6) 

Fig. 1. A classic example of MR image (T2-weighted brain 
image) and k-space sampling pattern. On the left: MR 
image example (512 × 512 px), source [2]. On the right: 
scheme of N Fourier lines k-space sampling pattern, lines 
and arrows show the direction of k-space acquisition. 
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Fig. 2. An example of MR image compressibility. Popular 
Daubechies wavelets were applied to compress the image 
and the reconstructed was obtained from 10% of wavelet 
transform largest coeffi cients, showing almost no loss of 
information. (a) Wavelet transform of the image (from 
Fig. 1). (b) Image reconstructed from 10% of wavelet 
transform largest coeffi cients. 
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where xs is the best s-sparse approximation of x and 
constant C0 depends on 2s. 

The above result, proved in [4], means that if x 
is s-sparse then the reconstruction is exact. 

Compressed sensing in MRI – basic example 

The basic example of a ‘good’ measurement matrix 
is the Fourier transform matrix [5]. 

Theorem 4. If n is a prime number then any 
s-sparse signal x  Cn can be uniquely reconstructed 
from m  2s uniformly chosen Fourier coeffi cients x̂ . 

In the real-life applications, it is harder than that. 
Measurements are susceptible to errors and the 
signal is not sparse but compressible (and usually 
not in the original base but in some representation, 
i.e. wavelet transform). Nevertheless this method 
works (with minor changes), because not all of the 
assumptions are strictly required (i.e. asymptotic 
incoherence). 

Given that MR images are compressible in 
wavelet domain and data acquisition is based on 
Fourier transform, it is natural to utilize compressed 
sensing methods, such as described above. Some 
modifi cations need to be made (such as non-uniform 
random sampling), but basics of the method still 
hold (Fig. 3). 

Remarks 

In MR tomography, it is not possible to sample 
k-space completely at random, but it is possible to 
choose random parallel k-space trajectories. While in 

2D case it means randomness only in one dimension, 
better results are obtained when we are dealing with 
3D data acquisition (maybe 4D acquisition, which 
includes time, would be even better because of the 
randomness in three dimensions). Unfortunately, 
at this point studies are mainly academic; however, 
one of the most important MR instruments producer 
(Siemens [6]) is already trying to implement CS 
methods. More importantly, although it is quite new, 
this subject is very dynamically developing. 
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Fig. 3. k-Space sampling mask, and map of the absolute error of CS reconstruction from randomly sampled k-space data. 


