The rapid interphase chromosome assay (RICA) implementation: comparison with other PCC methods

Open access


A report is presented on the advantages of the rapid interphase chromosome assay (RICA) and the difficulties that may be met while implementing this method for application in biological dosimetry. The RICA test can be applied on unstimulated human lymphocytes; this is an advantage in comparison with the dicentric chromosomes or micronucleus tests. In the former two tests, stimulated lymphocytes are examined and hence, 48 h more are needed to obtain cells traversing the cell cycle. Due to the use of unstimulated nondividing cells, higher numbers of cells are available for RICA analysis than for dicentric chromosomes or micronuclei tests. Moreover, the method can be applied after exposure to ionizing radiation doses in excess of 5 Gy. Such doses cause a significant cell cycle delay or result in the loss of G2 phase and mitotic cells because of apoptosis. Therefore, the traditional biodosimetry based on the evaluation of the incidence of damage to chromosomes is very difficult to carry out. This is due to the lack of an adequate number of mitotic cells for analysis. RICA is free of this disadvantage. An automatic microscope can be used to retrieve cell images; automatic image analysis can also be used.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Flegal F. N. Devantier Y. McNamee J. P. & Wilkins R. C. (2010). Quickscan dicentric chromosome analysis for radiation biodosimetry. Health Phys. 98 276-281. DOI: 10.1097/HP.0b013e3181aba9c7.

  • 2. Flegal F. N. Devantier Y. Marro L. & Wilkins R. C. (2012). Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Phys. 102 143-153. DOI: 10.1097/HP.0b013e3182307758.

  • 3. Romm H. Ainsbury E. Barnard S. Barrios L. Barquinero J. F. Beinke C. Deperas M. Gregoire E. Koivistoinen A. Lindholm C. Moquet J. Oestreicher U. Puig R. Rothkamm K. Sommer S. Thierens H. Vandersickel V. Vral A. & Wojcik A. (2014). Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. Health Phys. 106(6) 764-771. DOI: 10.1097/HP.0000000000000077.

  • 4. Thierens H. Vral A. Vandevoorde C. Vandersickel V. de Gelder V. Romm H. Oestreicher U. Rothkamm K. Barnard S. Ainsbury E. Sommer S. Beinke C. & Wojcik A. (2014). Is a semi-automated approach indicated in the application of the automated micronucleus assay for triage purposes? Radiat. Prot. Dosim. 159(1/4) 87-94. DOI: 10.1093/rpd/ ncu130. Epub 2014 Apr 17.

  • 5. McNamee J. P. Flegal F. N. Greene H. B. Marro L. & Wilkins R. C. (2009). Validation of the cytokinesis- -block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Radiat. Prot. Dosim. 135(4) 232-242. DOI: 10.1093/rpd/ncp119.

  • 6. Roch-Lefèvre S. Mandina T. Voisin P. Gaëtan G. Mesa J. E. Valente M. Bonnesoeur P. García O. Voisin P. & Roy L. (2010). Quantifi cation of gamma- -H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat. Res. 174(2) 185-194. DOI: 10.1667/RR1775.1.

  • 7. Barnard S. Ainsbury E. A. Al-Hafi dh J. Hadjidekova V. Hristova R. Lindholm C. Monteiro Gil O. Moquet J. Moreno M. Rößler U. Thierens H. Vandevoorde C. Vral A. Wojewódzka M. & Rothkamm K. (2014). The fi rst gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat. Prot. Dosim. pii: ncu259. [Epub ahead of print] PubMed PMID: 25118318.

  • 8. Rothkamm K. Barnard S. Ainsbury E. A. Al- Hafi dh J. Barquinero J. F. Lindholm C. Moquet J. Perälä M. Roch-Lefèvre S. Scherthan H. Thierens H. Vral A. & Vandersickel V. (2013). Manual versus automated γ-H2AX foci analysis across fi ve European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat. Res. 756(1/2) 170-173. DOI: 10.1016/j. mrgentox.2013.04.012.

  • 9. Prasanna P. G. Escalada N. D. & Blakely W. F. (2000). Induction of premature chromosome condensation by a phosphatase inhibitor and a protein kinase in unstimulated human PBL: a simple and rapid technique to study chromosome aberrations using specifi c whole-chromosome DNA hybridization probes for biological dosimetry. Mutat. Res. 466(2) 131-141. PubMed PMID: 10727901.

  • 10. Prasanna P. G. Hamel C. J. Escalada N. D. Duffy K. L. & Blakely W. F. (2002). Biological dosimetry using human interphase peripheral blood lymphocytes. Mil. Med. 167(Suppl. 2) 10-12. PubMed PMID: 11873484.

  • 11. Coco-Martin J. M. & Begg A. C. (1997). Detection of radiation-induced chromosome aberrations using fl uorescence in situ hybridization in drug-induced premature chromosome condensations of tumor cell lines with different radiosensitivities. Int. J. Radiat. Biol. 71(3) 265-273. PMID: 9134016.

  • 12. Durante M. George K. & Yang T. C. (1996). Biological dosimetry by interphase chromosome painting. Radiat. Res. 145(1) 53-60. PMID: 8532837.

  • 13. Gotoh E. & Durante M. (2006). Chromosome condensation outside of mitosis: Mechanisms and new tools. J. Cell Physiol. 209(2) 297-304. PMID: 16810672.

  • 14. Gotoh E. & Tanno Y. (2005). Simple biodosimetry method for cases of high-dose radiation exposure using the ratio of the longest/shortest length of Giemsa stained drug-induced prematurely condensed chromosomes (PCC). Int. J. Radiat. Biol. 81(5) 379-385. PMID: 16076753.

  • 15. Gotoh E. Tanno Y. & Takakura K. (2005). Simple biodosimetry method for use in cases of high-dose radiation exposure that scores the chromosome number of Giemsa-stained drug-induced prematurely condensed chromosomes (PCC). Int. J. Radiat. Biol. 81(1) 33-40. PMID: 15962761.

  • 16. Lamadrid A. I. García O. Delbos M. Voisin P. & Roy L. (2007). PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation. J. Radiat. Res. 48(1) 1-6. PMID: 17102580.

  • 17. Prasanna P. G. S. Muderhwa J. M. Miller A. C. Grace M. B. Salter C. A. & Blakely W. F. (2004). Diagnostic biodosimetry response for radiation disasters: Current research and service activities at Armed Forces Radiobiology Research Institute USA. Armed Forces Radiobiology Research Institute USA. (RTO-MP-HFM-108).

  • 18. Wang Z. Z. Li W. J. Zhi D. J. Jing X. G. Wei W. Gao Q. X. & Liu B. (2007). Biodosimetry estimate for high-LET irradiation. Radiat. Environ. Biophys. 46(3) 229-235. PMID: 17443338.

  • 19. Wang Z. Z. Li W. J. Zhi D. J. Gao Q. X. Qu Y. & Wang B. Q. (2009). Prematurely condensed chromosome fragments in human lymphocytes induced by high doses of high-linear-energy-transfer irradiation. Mutat. Res. 679(1/2) 9-12. DOI: 10.1016/j. mrgentox.2009.08.001. Epub 2009 Aug 8.

  • 20. Durante M. Furusawa Y. & Gotoh E. (1998). A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int. J. Radiat. Biol. 74(4) 457-462. PMID: 9798956.

  • 21. Resjö S. Oknianska A. Zolnierowicz S. Manganiello V. & Degerman E. (1999). Phosphorylation and activation of phosphodiesterase type 3B (PDE3B) in adipocytes in response to serine/threonine phosphatase inhibitors: deactivation of PDE3B in vitro by protein phosphatase type 2A. Biochem. J. 341(3) 839-845. PMC 1220425.

  • 22. Pantelias G. E. & Maillie H. D. (1983). A simple method for premature chromosome condensation induction in primary human and rodent cells using polyethylene glycol. Somatic Cell Genet. 9(5) 533-547. PMID: 6623312.

  • 23. Pantelias G. E. & Maillie H. D. (1984). The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological dosimetry. Radiat. Res. 99(1) 140-150. PMID: 6539927.

  • 24. Lamadrid Boada A. I. Romero Aguilera I. Terzoudi G. I. González Mesa J. E. Pantelias G. & García O. (2013). Rapid assessment of high-dose radiation exposures through scoring of cell-fusion-induced premature chromosome condensation and ring chromosomes. Mutat. Res. 757(1) 45-51. DOI: 10.1016/j. mrgentox.2013.06.021. Epub 2013 July 12.

  • 25. Darroudi F. Terzoudi G. I. Pantelias G. Sommer S. & Hajidekova V. (2013). RENEB (Realizing the European Network of Biodosimetry). Periodic Report 1 January 2012 - 30 June 2013 WP 1 Task 4 for EC.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 92 3
PDF Downloads 81 53 2