Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

Open access


The effect of roller burnishing on Vickers’ hardness and positron lifetimes in the AZ91HP magnesium alloy was studied. The microhardness increases with an increase in the burnishing force and with a decrease in the feed. The comparison of various methods of analysis of positron annihilation lifetime (PAL) spectra allowed identification of two components, which are related to solute-vacancy complexes and vacancy clusters, respectively. It was found that the increase in microhardness was related to the increase in the concentration of vacancy clusters.

1. Zhang, P., & Lindemann, J. (2005). Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(6), 485–490. DOI: 10.1016/j.scriptamat.2004.11.003.

2. Zhang, P., & Lindemann, J. (2005). Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(10), 1011–1015. DOI: 10.1016/j.scriptamat.2005.01.026.

3. Fouad, Y. (2011). Fatigue behavior of a rolled AZ31 magnesium alloy after surface treatment by EP and BB conditions. Alexandria Eng. J., 50(1), 23–27. DOI: 10.1016/j.aej.2011.01.004.

4. Pu, Z., Yang, S., Song, G. L., Dillon Jr, O. W., Puleo, D. A., & Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Mater., 65(6), 520–523. DOI: 10.1016/j.scriptamat.2011.06.013.

5. Zaleski, R., & Zaleski, K. (2006). Positron annihilation in steel burnished by vibratory shot peening. Acta Phys. Pol. A, 110(5), 739–746.

6. Zaleski, K., & Zaleski, R. (2009). Badania warstwy wierzchniej stopu tytanu technikami wykorzystującymi anihilację pozytonów. Inżynieria Materiałowa, 5, 302–305.

7. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.

8. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A, 479(1/2), 37–44. DOI: 10.1016/j.msea.2007.06.016.

9. Djourelov, N., & Misheva, M. (1996). Source correction in positron annihilation lifetime spectroscopy. J. Phys.-Condens. Mat., 8(12), 2081. DOI: 10.1088/0953-8984/8/12/020.

10. Čížek, J., Procházka, I., Smola, B., Stulíková, I., & Očenášek, V. (2007). Influence of deformation on precipitation process in Mg-15 wt.%Gd alloy. J. Alloys Compd., 430(1/2), 92–96. DOI: 10.1016/j.jallcom.2006.03.097.

11. Čížek, J., Vlček, M., Smola, B., Stulíková, I., Procházka, I., Kužel, R., Jäger, A., & Lejček, P. (2012). Vacancy-like defects associated with icosahedral phase in Mg-Y-Nd-Zr alloys modified by the addition of Zn. Scripta Mater., 66(9), 630–633. DOI: 10.1016/j.scriptamat.2012.01.054.

12. Dryzek, J., & Dryzek, E. (2007). The subsurface zone in magnesium alloy studied by positron annihilation techniques. Tribol. Int., 40(9), 1360–1368. DOI: 10.1016/j.triboint.2007.03.004.

13. Ortega, Y., & Rıo, Jd. (2005). Study o f Mg-Ca alloys by positron annihilation technique. Scripta Mater., 52(3), 181–186. DOI: 10.1016/j.scriptamat.2004.09.033.

14. Moia, F., Calloni, A., Ferragut, R., Dupasquier, A., Macchi, C. E., Somoza, A., & Jian Feng Nie (2009). Vacancy-solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study. Int. J. Mater. Res., 100(3), 378–381. DOI: 10.3139/146.110036.

15. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., & Cherkaska, V. (2006). Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Phys. Status Solidi A, 203(3), 466–477. DOI: 10.1002/pssa.200521483.

16. Hautojärvi, P., Johansson, J., Vehanen, A., Yli-Kauppila, J., Hillairet, J., & Tzanétakis, P. (1982). Trapping of positrons at vacancies in magnesium. Appl. Phys. A, 27(1), 49–56. DOI: 10.1007/BF01197546.

17. Checchetto, R., Bazzanella, N., Kale, A., Miotello, A., Mariazzi, S., Brusa, R. S., Mengucci, P., Macchi, C., Somoza, A., Egger, W., & Ravelli, L. (2011). Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering. Phys. Rev. B, 84(5), 054115. DOI: 10.1103/PhysRevB.84.054115.

18. Luna, C. R., Macchi, C., Juan, A., & Somoza, A. (2013). Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J. Phys. Conf. Ser., 443(1), 012019. DOI: 10.1088/1742-6596/443/1/012019.

19. Brandt, W. (1974). Positron dynamics in solids. A ppl. Phys., 5(1), 1–23. DOI: 10.1007/BF01193389.


The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information

IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 116 8
PDF Downloads 77 60 9