Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

Open access

Abstract

Two different classes of molecular crystals were investigated. The first group was benzenediols, which are characterized by the same chemical composition but a different organization of their crystallographic structures; all of the compounds from this group have only one kind of free volumes. The second class was represented by olanzapine, which has more complex chemical composition and two kinds of free volumes in the structure. The o-Ps lifetime values determined from positron annihilation lifetime spectroscopy (PALS) measurements agree quite well with those calculated for sizes found from crystallographic data for benzenediols (agreement within 10% of the lifetime values). For olanzapine, a good agreement is observed in the case of cuboidal free volumes, while for the other kind of void, the agreement is less satisfactory. Positronium diffusion coefficient determined from o-Ps redistribution in olanzapine agrees with these found for polymers.

1. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56, 5499–5510. DOI: 10.1063/1.1677067.

2. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63, 51–58. DOI: 10.1016/0301-0104(81)80307-2.

3. Jasińska, B., Kozioł, A. E., & Goworek, T. (1996). Ortho-positronium lifetimes in nonspherical voids. J. Radioanal. Nucl. Chem., 210(2), 617–623. DOI: 10.1007/BF02056403.

4. Jasińska, B., Kozioł, A. E., & Goworek, T. (1999). Void shapes and o-Ps lifetime in molecular crystals. Acta Phys. Pol. A, 95, 557–561.

5. Goworek, T., Ciesielski, K., Jasińska, B., & Wawryszczuk, J. (1997). Positronium in large voids. Silicagel. Chem. Phys. Lett., 272, 91–95. DOI: 10.1016/S0009-2614(97)00504-6.

6. Ciesielski, K., Dawidowicz, A., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45. DOI: 10.1016/S0009-2614(98)00416-3.

7. Kobayashi, Y., Zheng, W., Meyer, E. F., McGervey, J. D., Jamieson, A. M., & Simha, R. (1989). Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation. Macromolecules, 22(5), 2302–2306. DOI: 10.1021/ma00195a052.

8. Dlubek, G., Pionteck, J., Sniegocka, M., Hassan, E. M., & Krause-Rehberg, R. (2007). Temperature and pressure dependence of the free volume in the perfluorinated polymer glass CYTOP: A positron lifetime and pressure-volume-temperature study. J. Polym. Sci. Pt. B-Pol. Phys., 45(18), 2519–2534. DOI: 10.1002/polb.21248.

9. Brandt, W., & Paulin, R. (1968). Positronium diffusion in solids. Phys. Rev. Lett., 21, 193–195. DOI: 10.1103/PhysRevLett.21.193.

10. Venkateswaran, K., Cheng, K. L., & Jean, Y. C. (1984). Application of positron annihilation to study the surface properties of porous resins. J. Phys. Chem., 88, 2465–2469. DOI: 10.1021/j150656a010.

11. Tydda, M., Jasińska, B., Kozioł, A. E., & Wawrzycka-Gorczyca, I. (2013). Modification of the crystallographic structure of olanzapine during solvation by PALS and X-ray diffraction methods. Mater. Sci. Forum, 733, 92–95.

12. Kansy, J. (1996). Microcomputer program for analysis of positron lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374, 235–244. DOI: 10.1016/0168-9002(96)00075-7.

13. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Dect. Assoc. Equip., 335, 310–317. DOI: 10.1016/0168-9002(93)90286-Q.

14. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68, 531–534. DOI: 10.1016/S0969-806X(03)00224-X.

15. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Ryan, E. T., & Ho, H. M. (1999). Positronium annihilation in mesoporous thin films. Phys. Rev. B, 60(8), 5157–5160. DOI: 10.1103/PhysRevB.60.R5157.

16. Dlubek, G., Eichler, S., Hubner, Ch., & Nagel, Ch. (1999). Does the MELT program accurately reveal the lifetime distribution in polymers? Phys. Status Solidi A, 174, 313–325. DOI: 10.1002/(SICI)1521-396X(199908)174:2<313::AIDPSSA313>3.3.CO;2-U.

17. Dlubek, G., Hubner, Ch., & Eichler, S. (1998). Do the CONTIN or the MELT programs accurately reveal the o-Ps lifetime distribution in polymers? Analysis of experimental lifetime spectra of amorphous polymers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 142, 191–202. DOI: 10.1016/S0168-583X(98)00265-1.

18. Zgardzinska, B. (2015). The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett., 62, 20–22. DOI: 10.1016/j.cplett.2015.01.021.

19. Stepanov, S., & Byakov, V. (2003). Physical and radiation chemistry of positron and positronium. In Y. C. Jean, P. Mellon, & D. M. Schradder (Eds.), Principles and applications of positron and positronium chemistry (pp. 117–148). Singapore: World Scientific. DOI: 10.1142/9789812775610_0005.

20. Hirata, K., Kobayashi, Y., & Ujihira, Y. (1996). Diffusion coefficients of positronium in amorphous polymers. J. Chem. Soc., Faraday Trans., 92, 985–988.

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information


IMPACT FACTOR 2018: 0,585
5-year IMPACT FACTOR: 0,513



CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.250
Source Normalized Impact per Paper (SNIP) 2018: 0.527

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 167 8
PDF Downloads 83 61 3