Isotropic distributions in hcp crystals

Open access

Abstract

Some anisotropic quantities in crystalline solids can be determined from their knowledge along a limited number of sampling directions. The importance of the choice of such directions is illustrated on the example of estimating, from angular correlation of annihilation radiation data, the isotropic electron momentum density in Gd.

1. Houston, W. V. (1948). Normal vibrations of a crystal lattice. Rev. Mod. Phys., 20, 161–165.

2. Mueller, F. M., & Priestley, M. G. (1966). Inversion of cubic de Haas-van Alphen Data, with an application to palladium. Phys. Rev., 148, 638–643.

3. Bhatia, A. B. (1955). Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev., 97, 363–371.

4. Betts, D. D., Bhatia, A. B., & Womann, M. (1956). Houston’s method and its application to the calculation of characteristic temperatures of cubic crystals. Phys. Rev., 104, 37–42.

5. Betts, D. D., Bhatia, A. B., & Horton, J. W. (1956). Debye characteristic temperatures of certain noncubic crystals. Phys. Rev., 104, 43–47.

6. Ghosh, G., Delsante, S., Borzone, G., Asta, M., & Ferro, R. (2006). Phase stability and cohesive properties of Ti-Zn intermetallics: First-principles calculations and experimental results. Acta Mater., 54, 4977–4997.

7. Taylor, C. D., Lookman, T., & Scott, L. R. (2010). Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3. Acta Mater., 58, 1045–1055.

8. Bansil, A. (1979). Coherent-potential and average-matrix approximations for disordered muffin-tin alloys. II. Application to realistic systems. Phys. Rev. B, 20, 4035–4043.

9. Prasad, R., & Bansil, A. (1980). Special directions for Brillouin-zone integration: Application to density of states calculations. Phys. Rev. B, 21, 496–503.

10. Šob, M., Szuszkiewicz, S., & Szuszkiewicz, M. (1984). Polarized positron annihilation enhancement effects in ferromagnetic iron. Phys. Status Solidi B, 123, 649–652.

11. Šob, M. (1985). Electronic structure and positron annihilation in alkali metals: Isolation of ionic core contribution and valence high-momentum components. Solid State Commun., 53, 249–253.

12. Aguiar, J. C., Mitnik, D., & DiRocco, H. O. (2015). Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids, 83, 64–69.

13. Ahuja, B. L., Sharma, M. D., Sharma, B. K., Hamouda, S., & Cooper, M. J. (1994). Compton profile of polycrystalline yttrium. Phys. Scripta, 50, 301–304.

14. Ahuja, B. L., Sharma, M., & Bross, H. (2007). Compton profile study of gold: Theory and experiment. Phys. Status Solidi B, 244, 642–649.

15. Ahuja, B. L., Mohammad, F. M., Mohammed, S. F., Sahariya, J., Mund, H. S., & Heda, N. L. (2015). Compton scattering and charge transfer in Er substituted DyAl2. J. Phys. Chem., 77, 50–55.

16. Bross, H. (2006). Special directions for surface integrals in cubic lattices with application to the evaluation of the Compton profile of copper. Phys. Status Solidi B, 243, 653–665.

17. Bross, H. (2004). The local density approximation limit of the momentum density and the Compton profiles of Al. J. Phys.-Condens. Mat., 16, 7363–7378.

18. Bross, H. (2005). Electronic structure of Li with emphasis on the momentum density and the Compton profile. Phys. Rev. B, 72, 115109(14 pp.).

19. Chu-Nan, Chang, Yu-Mei, Shu, Chuhn-Chuh, Chen, & Huey-Fen, Liu. (1993). The Compton profiles of tantalum. J. Phys.-Condens. Mat., 5, 5371–5376.

20. Joshi, K. B., Pandya, R. K., Kothari, R. K., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. Phys. Status Solidi B, 246, 1268–1274.

21. Ohata, T., Itou, M., Matsumoto, I., Sakurai, Y., Kawata, H., Shiotani, N., Kaprzyk, S., Mijnarends, P. E., & Bansil, A. (2000). High-resolution Compton scattering study of the electron momentum density in Al. Phys. Rev. B, 62, 16528–16535.

22. Sharma, G., Joshi, K. B., Mishra, M. C., Kothari, R. K., Sharma, Y. C., Vyas, V., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. J. Alloys Compd., 485, 682–686.

23. Kawasuso, A., Maekawa, M., Fukaya, Y., Yabuuchi, A., & Mochizuki, I. (2011). Polarized positron annihilation measurements of polycrystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B, 83, 0406(R).

24. Kontrym-Sznajd, G. (2013). Utilization of symmetry of solids in experimental investigations. Nukleonika, 58, 205–208.

25. Waspe, R. L., & West, R. N. (1982). The Fermi surface of gadolinium. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 328–330). Amsterdam: North-Holland Publ. Co.

26. Kontrym-Sznajd, G., & Samsel-Czekała, M. (2012). Special directions in momentum space. II. Hexagonal, tetragonal and trigonal symmetries. J. Appl. Crystal., 45, 1254–1260.

27. Kontrym-Sznajd, G., Samsel-Czekała, M., Pietraszko, A., Sormann, H., Manninen, S., Huotari, S., Hämäläinen, K., Laukkanen, J., West, R. N., & Schülke, W. (2002). Electron momentum density in yttrium. Phys. Rev. B, 66, 155110(10 pp).

28. Walters, P. A., Mayers, J., & West, R. N. (1982). Two-dimensional electron-positron momentum densities in the hcp metals: Mg, Zn, and Cd. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 334–336). Amsterdam: North-Holland Publ. Co.

29. Stewart, A. T. (1957). Momentum distribution of metallic electrons by positron annihilation. Can. J. Phys., 35, 168–183.

30. Lam, L., & Platzman, P. M. (1974). Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism. Phys. Rev. B, 9, 5122–5127.

31. Kubo, Y. (2005). Electron correlation effects on Compton profiles of copper in the GW approximation. J. Phys. Chem. Solids, 66, 2202–2206.

32. Bansil, A. (1975). Special directions in the Brillouin zone. Solid State Commun., 16, 885–889.

33. Fehlner, W. R., Nickerson, S. B., & Vosko, S. H. (1976). Cubic harmonic expansions using Gauss integration formulas. Solid State Commun., 19, 83–86.

34. Fehlner, W. R., & Vosko, S. H. (1976). A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys., 54, 215–216.

35. Wasserman, E., Stixrude, L., & Cohen, R. E. (1996). Thermal properties of iron at high pressures and temperatures. Phys. Rev. B, 53, 8296–8309.

Nukleonika

The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information


IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610



CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 0.509

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 193 25
PDF Downloads 67 67 5