Dyson line and modified Dyson line in the EPR measurements

Open access


The difficulty in determining the electron paramagnetic resonance (EPR) line parameters of ferromagnetic semiconductors has been addressed. For these materials, the resonance line is very broad and lies at low resonance field, so that only a part of the line can be detected experimentally. Moreover, the line is of asymmetric (Dysonian) shape as described by the line shape parameter α. We have compared values of line parameters derived by computer fitting of the whole experimental EPR line to the Dyson function (or modified Dyson function) with the values obtained by applying this procedure to the left and the right half of the line.

1. Dyson, F. J. (1955). Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev., 98(2), 349–359.

2. Feher, G., & Kip, A. F. (1955). Electron spin resonance absorption in metals. I. Experimental. Phys. Rev., 98(2), 337–351. http://dx.doi.org/10.1103/PhysRev.98.337.

3. Webb, R. H. (1964). Electron-spin-resonance line shape in spherical metal particles. Phys. Rev., 158(2), 225–233. http://dx.doi.org/10.1103/Phys-Rev.158.225.

4. Joshi, J. P., & Bhat, S. V. (2004). On the analysis of broad Dysonian electron paramagnetic resonance spectra. J. Magn. Reson., 168(2), 284–287. DOI: 10.1016/j.jmr.2004.03.018.

5. Blinowski, J. P., Kacman, J. A., & Majewski, J. (1996). Ferromagnetism in Cr-based diluted magnetic semiconductions. J. Cryst. Growth, 159(1/4), 972–975.

6. Peter, M., Shaltiel, D., Wernick, J. H., Williams, H. J., Mock, J. B., & Sherwood, R. C. (1962). Paramagnetic resonance of S-state ions in metals. Phys. Rev., 126(4), 1395–1402. http://dx.doi.org/10.1103/PhysRev.126.1395.

7. Burgardt, P., & Seehra, M. S. (1977). Electron paramagnetic resonance in gadolinium near TC. Phys. Rev. B, 16(5), 1802–1807. http://dx.doi.org/10.1103/PhysRevB.16.1802.

8. Bleaney, B., & Abragam, A. (1986). Electron paramagnetic resonance of transition ions. New York: Dover Publications.

9. Ivanshin, V. A., Deisenhofer, J., Krug von Nidda, H. A., Loidl, A., Mukhin, A. A., Balbashov, A. M., & Eremin, M. V. (2000). ESR study in lightly doped La1-xSrxMnO3. Phys. Rev. B, 61(9), 6213–6219. DOI: 10.1103/PhysRevB.61.6213.

10. Stefaniuk, I., Bester, M., & Kuzma, M. (2008). Ferromagnetic resonance in CdCrTe solid solution. J. Phys.-Conf. Ser., 104, 012010. DOI: 10.1088/1742-6596/104/1/012010.

11. Sreenivasan, M. G., Bi, J. F., Teo, K. L., Liew, T. J. (2008). Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zinc-blende CrTe towards half-metallicity. J. Appl. Phys., 103, 043908.

12. Kuzma, M., Stefaniuk, I., & Bester, M. (2010). Theoretical models and EPR study of Cr based diluted magnetic semiconductors. J. Phys.-Conf. Ser., 213, 012035. DOI: 10.1088/1742-6596/213/1/012035.

13. Akram, M., & Nazar, F. M. (1983). Magnetic properties of CrTe, Cr23Te24, Cr7Te8, Cr5Te6, and Cr3Te4 compounds. J. Mater. Sci., 18, 423. DOI: 10.1007/BF00560631.

14. Langreth, D. C., & Wilkins, J. W. (1972). Theory of spin resonance in dilute magnetic alloys. Phys. Rev. B, 6, 3189. http://dx.doi.org/10.1103/PhysRevB.6.3189.


The Journal of Instytut Chemii i Techniki Jadrowej

Journal Information

IMPACT FACTOR 2017: 0.720
5-year IMPACT FACTOR: 0.610

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 0.509

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 266 17
PDF Downloads 118 115 9