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Introduction 

The interaction of high power laser beams with 
plasmas and semiconductors, plays a very important 
role in the study of various nonlinear phenomena, 
e.g. harmonic generation, frequency up-conversion, 
signal processing, etc. [1–5]. Harmonic generation 
during high power laser interaction with plasmas 
is observed under different conditions [6, 7]. The 
interaction of ultra-intense laser beam with plasma 
also produces second harmonic generation by in-
ducing transverse plasma currents which is highly 
nonlinear and relativistic, resulting in the generation 
of second harmonic current density which drive the 
second harmonic generation. 

Second harmonic generation during laser plasma 
interaction has become more prominent. Although, 
the effi ciency of harmonic generation observed dur-
ing laser plasma interaction is quite low. A number 
of techniques have been employed to enhance the 
effi ciency of harmonic generation, out of these, ef-
fect of self-focusing of fundamental laser beam has 
shown great importance on harmonic generation 
[8, 9]. Relativistic self-focusing of the laser beam 
has been studied in detail both theoretically as well 
as experimentally [10]. As the process of harmonic 
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generation is non-resonant, so to make the process 
resonant various schemes are proposed by various 
researchers [3, 7, 11, 12]. It has been found that 
in order to  provide additional momentum to the 
harmonic photon to make the process resonant 
which leads to enhance the effi ciency of harmonic 
generation, the effect of plasma with density ripple 
and Wiggler magnetic fi eld can be introduced. 

In order to obtain effi cient harmonic generation, 
phase matching condition must be satisfi ed. Osman 
et al. [13] have studied resonant harmonic genera-
tion of intense laser in plasma. Hafi zi et al. [14] have 
derived an envelope equation for the laser spot size 
to describe the axial evolution of the spot size as a 
function of the ratio of laser power P to the critical 
power Pc for relativistic focusing. Hora and Ghatak 
[15] have derived and evaluated by including unre-
stricted electric fi elds, a second harmonic resonance 
for perpendicular incidence at four times the critical 
density, from hydrodynamics. Also second harmonic 
emission in the forward direction from an under 
dense plasma has been observed experimentally by 
Baton et al. [16]. The simultaneous observation 
of time-resolved and 2D time-integrated images of 
second harmonic generation has been reported by 
them. These diagnostics have a good spatial and 
temporal resolution, allowing the detection of sec-
ond harmonic emission in small and well-defi ned 
regions. Schifano et al. [17] have observed the sec-
ond harmonic generation from preformed plasma as 
a valuable diagnostic for fi lamentation under various 
interaction conditions. Ganeev et al. [18] have pre-
sented experimental study on harmonic generation 
from solid surface irradiated by short laser pulses. 
The relative harmonic yield for the P and S polariza-
tion of the pump wave and their scaling with laser 
intensity are discussed. High harmonic generation 
in relativistic laser–plasma interaction has also 
been studied by Banerjee et al. [19]. They showed 
that relativistic Thomson scattering produces a sig-
nifi cant amount of harmonic radiation. A nonlinear 
theory for harmonic generation of a high power laser 
in under dense plasma has been proposed by Lin et 
al. [20]. In their theory, harmonic sideband genera-
tion is related to the transition of system equilibrium 
states. Their numerical results revealed that laser 
power and plasma density parameters are crucial 
to harmonic generation. 

In this paper we present a model to enhance 
the efficiency of second harmonic generation. 
We propose a scheme to introduce a density ramp 
profi le in plasma which plays an important role in 
self-focusing which leads to enhance the second 
harmonic generation in plasma. We consider the 
plasma density as a function of propagation distance. 
The dependence of relativistic self-focusing and 
plasma density on second harmonic generation 
has been studied. As the plasma density ramp is 
introduced, the fundamental laser beam propagates 
up to long distance without divergence [8, 21–24]. 
Therefore, relativistic self-focusing of fundamental 
laser beam becomes stronger which greatly enhances 
the intensity and hence the effi ciency of the second 
harmonic generation. 

In the next section, we derive the equation 
of beam width parameter of the fundamental laser 
beam, and the equation describing the variation of 
normalized amplitude of the second harmonic wave 
A''

20 with normalized propagation distance . The nu-
merical results are discussed in section ‘Relativistic 
self-focusing’, and the conclusions are presented in 
the last section. 

Theoretical considerations 

Consider the propagation of Gaussian short pulse 
laser beam in a preformed plasma channel with an 
upward plasma density ramp along z-direction in the 
presence of a Wiggler magnetic fi eld B



W. The fi eld of 
the laser beam can be written as 

(1)

(1a) 

(1b) 

(1c) 

where A1 is the amplitude of the fundamental laser 
pulse inside plasma, A10 is the constant amplitude 
of the fundamental laser pulse, r0 is the spot size of 
the fundamental laser pulse at z = 0, f1 is the beam 
width parameter of the fundamental laser pulse, 
1 and k1 are the frequency and wave number of 
fundamental laser beam and k0 is the Wiggler wave 
number. The pump wave and the second harmonic 
wave obey the linear dispersion relation, k2  (2/
c2)(1 − 2

p /2). The wave vector k


 increases more 
than linearly with frequency , hence k2 > 2k1. The 
difference of momentum can be provided to the 
second harmonic photon by the Wiggler magnetic 
fi eld when k



2 = 2k


1 + k


0; the value of k


0 required 
for the phase matching can be obtained as k0 = 
(21/c)[(1 − 2

p /41
2)1/2 – (1 − 2

p /1
2)], where p 

= (4()e2/m)1/2 is the plasma frequency which is a 
function of propagation distance, m = m0, where 
 = 1 – v2/c2 and the plasma density profi le [8] 
is taken as n() = n0 tan(/d), where  = z/Rd; 
Rd = kr0

2; is the diffraction length, c is the velocity 
of light in vacuum, n0 is the electron density, and e 
and m0 are the charge and rest mass of the electron, 
respectively. 

Let us consider the dielectric constant of the 
plasma which can be expressed as, 

(2)    = 0 + (EE*) 

Therefore, the plasma frequency can be written as, 

(3) 

where  = 1 + e2EE*/c2m0
20

2. Now, in case of col-
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lisionless plasma, the nonlinearity in the dielectric 
constant is due to relativistic mass increase and 
ponderomotive force, and the nonlinear part of 
dielectric constant is given by 

(4)                                                                         . 

Relativistic self-focusing 

Wave equation for fundamental wave can be deduced 
by using Maxwell’s equations 

(5) 

The solution of this equation can be assumed as, 

(6) 

where k1 = 1
2 – 2

p0 tan(/d)/ and A(x,y,z) is the 
complex amplitude of the electric fi eld. 

We can express A(x,y,z) as, 
A(x,y,z) = A0p(x,y,z)exp[−ik1s(x,y,z)], or 

(7) 

where A0p and S and are real functions of x, y and z. 
Therefore, Eq. (5) can be written as, 

(8) 

where  = 1 − p
2/1

2 and  = p
2/1

2 |1 – 1/(1 + 
a2/2)1/2|, where a = e2|A|2/m0

21
2c2. 

Using Eqs. (6), (7) and (8), and separating the 
real and imaginary parts of the resulting equation. 
Then, to fi nd a solution of these equations describ-
ing a Gaussian beam and satisfying the appropriate 
initial conditions we expand S as follows: 

(9) 

where  represents the inverse of the radius of cur-
vature of the wave front. 

For an initially Gaussian beam, 

(10) 

where f represents the beam width parameter of the 
fundamental laser beam. 

We obtain the equation of beam width parameter 
of the fundamental laser beam, 

(11) 

where k1' = k1c/1 and 0 = 1 – (2
p0/1

2)tan(/d). 
Equation (11) describes the variation of the beam 

width parameter f1 with the normalized distance 
of propagation . The fi rst term on the right-hand 
side corresponds to the diffraction divergence of 
the beam and the second term corresponds to the 
convergence resulting from the nonlinearity. Follow-
ing Nitikant and Sharma [10], the wave equation 
for second harmonic generation under relativistic 
effect can be written as, 

(12) 

where J


2
NL = [n0e4BWE1

2/4ic1
2m0

3(1 + iv)]
(3k1/41+(k1 + k0)/(1 + iv))x̂. 

The complementary solution of Eq. (12) is given 
by, 

(13) 

where S2 is a function of r and z. Using Eqs. (12) 
and (13), and equating real and imaginary parts, 

(14) 

(15) 

In the paraxial ray approximation, r2 << r0
2f 2

2, 
where f2 is the beam width parameter of second 
harmonic wave. We expand S2 as S2 = f(z) + 2r 2/2, 
where 2

−1 represents the radius of curvatures of the 
wave front of the second harmonic wave. For an 
initially Gaussian beam, we may write 

(16) 
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Substituting the values of S2 and A2
2 in Eqs. (14) 

and (15) and equating the coeffi cients of r2 on both 
sides, we obtain 

(17) 

(18) 

where '(A2
10/2f 2

1) = (S2/0)exp(–2A2
10/20f 2

1). 
The particular integral of Eq. (12) may be ex-

pressed as, 
                                                    

where
                                                                         .

Substitute E22 in Eq. (12), we obtain 

(19) 

Multiplying the above equation by 2
*rdr and 

integrating with respect to r, we get 

(20)

where A''
20 = A'

20/A10 is the normalized second har-
monic amplitude. 

Equation (20) describes the variation of normal-
ized amplitude of the second harmonic wave A''

20 with 
normalized propagation distance . 

Result and discussion 

We have solved Eqs. (11) and (20) numerically for 
beam width parameter and normalized second har-
monic amplitude by applying the boundary condi-
tions, corresponding to an initial plane wave front, at 
 = 0, f1 = 1, f1/ = 0, and at  = 0, A''

20 = 0. Nor-
malized set of parameters of laser and plasma are used 
as; c = eBW/m0c, A''

20 = A'
20/A10, a10 = eA10/m01c. 

For a typical case, plasma irradiated by a 1.06 m 
Nd:YAG laser (intensity I0  5 × 1017 W/cm2), Wiggler 
magnetic fi eld BW = 100 kG, the Wiggler period turns 
out to be  0.2 cm, which is technically feasible even 
mega-gauss magnetic fi eld can be generated [9]. Self-
-focusing occurs only when incident laser power ex-
ceeding the critical power. For high intensity laser, the 
critical power Pcr(W) = 2.16 × 1013/n0 [cm−3] mainly 
depends on electron density. Figure 1 shows the varia-
tion of beam width parameter of the fundamental 
laser beam with normalized propagation distance for, 
2A2

10/0 = 5, p0/1 = 0.8 and a10 = 0.2. It can be 
seen from Fig. 1 that strong self-focusing occurs at 
 = 0.7, f1 = 0.17, due to the dominance of nonlin-
ear term in Eq. (11). Figure 2 shows the variation 
of normalized second harmonic amplitude with the 
propagation distance for different values of p0/1 = 
0.2, 0.4, 0.6, 0.8. The other parameters are the same 
as taken in Fig. 1. A sharp increase in the normalized 
second harmonic amplitude is seen for p0/1 = 0.8 
at  = 0.7. Therefore, effi ciency of second harmonic 
generation increases greatly with the increase in 
plasma frequency in the focal region of fundamental 
laser beam. 

Figure 3 shows the variation of normalized 
second harmonic amplitude with the propagation 
distance for different values of c/1 = 0.2, 0.4, 0.6, 
0.8, the other parameters are the same as taken in 
Fig. 1. One can clearly see that the normalized sec-
ond harmonic amplitude increases with the increase 
in the Wiggler magnetic fi eld strength in the focal 
region. Therefore, effi ciency of second harmonic 
generation increases greatly with the increase in 
Wiggler magnetic fi eld on account of the self-focus-
ing of fundamental laser beam. Effi ciency of second 

'
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Fig. 1. Variation of beam width parameter of the funda-
mental laser beam with normalized propagation distance 
for, 2A2
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harmonic generation is affected by the strength of 
the Wiggler magnetic fi eld. The dynamics of oscil-
lating electrons is changed due to the Lorentz force 
which modifi es the plasma wave which affects the 

second harmonic signifi cantly. The second harmonic 
amplitude increases with the strength of the Wig-
gler magnetic fi eld. Figure 4 shows the variation of 
normalized second harmonic amplitude with the 
propagation distance for different values of normal-
ized fundamental intensity parameters, a10 = 0.2, 
0.4, 0.6, 0.8, 1. The other parameters are 2A2

10/0 
= 5, p0/1 = 0.8 and c/1 = 0.8. It is clear from 
Fig. 4 that as we increase the intensity of the funda-
mental laser beam, the effi ciency of second harmonic 
increases in the focal region. Figure 5 shows the 
variation of maximum normalized second harmonic 
amplitude with normalized intensity of fundamental 
laser beam a10 at  = 0.7 for 2A2

10/0 = 5, p0/1 = 
0.8 and c/1 = 0.8. This shows the linear variation 
of the normalized second harmonic amplitude with 
normalized fundamental intensity. As the electron 
plasma density is an increasing function of distance 
of propagation of laser, the diffraction length reduces 
as beam propagates deeper into the plasma. Hence 
the relativistic self-focusing of fundamental laser 
beam becomes stronger. Signifi cant enhancement in 
the second harmonic yield is seen with increase in 
the laser beam intensity as well as with increase 
in plasma density. Thus, laser power and plasma 
density parameters are crucial to harmonic genera-
tion [25]. We observe the enhancement in the second 
harmonic on account of the relativistic self-focusing 
of laser in plasma under plasma density ramp in 
the presence of Wiggler magnetic fi eld. Therefore, 
Wiggler magnetic fi eld and relativistic self-focusing 
combindly play an important role in the enhance-
ment of the intensity of the second harmonic wave. 
As the Wiggler magnetic fi eld increases, the second 
harmonic intensity also increases. 

Conclusion 

A slowly varying plasma density ramp plays an 
important role in the laser–plasma interaction. The 
density ramp may be important to make the self-
-focusing of short laser pulses stronger [26–29] if 
the laser and plasma parameters are chosen in an ap-
propriate way. In the present work we have seen the 
strong relativistic self-focusing of laser beam based 
on plasma density transition which leads to enhance 
the second harmonic generation in the plasma under 
the infl uence of Wiggler magnetic fi eld. With the 
increase of Wiggler magnetic fi eld the intensity of 
second harmonic generation increases. It is seen that 
the normalized second harmonic amplitude increases 
linearly with normalized fundamental intensity a10. 
Kuo et al. [22] have studied the enhancement of rela-
tivistic harmonic generation by an optically preformed 
periodic plasma waveguide. But in the present study 
we observe effi cient second harmonic generation on 
account of strong relativistic self-focusing of the fun-
damental laser beam in plasma under plasma density 
ramp. The present analysis is useful in making the 
second harmonic effi cient which may be effective in 
understanding the physics of laser–plasma interaction. 
Effi cient second harmonic signals are capable of read-
ing four times smaller area of DVD’s as compare to the 

Fig. 3. Variation of normalized second harmonic amplitude 
with the normalized propagation distance for 2A2

10/0 = 
5, p0/1 = 0.8, and a10 = 0.2. 
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Fig. 2. Variation of normalized second harmonic amplitude 
with the normalized propagation distance for 2A2

10/0 = 5, 
c/1 = 0.8, and a10 = 0.2. 

Fig. 4. Variation of normalized second harmonic amplitude 
with the propagation distance for 2A2

10/0 = 5, p0/1 = 
0.8, and c/1 = 0.8. 
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Fig. 5. Variation of normalized second harmonic ampli-
tude with normalized intensity of fundamental laser beam 
a10 for 2A2

10/0 = 5, p0/1 = 0.8, and c/1 = 0.8.
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fundamental signals. Second harmonic polarization 
anisotropy can be used to fi nd the orientation of pro-
teins in tissues as they have well-defined polarizations.
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