Numerical Analysis of Additively Manufactured, Individual Titanium Implants Designed in a Virtual Environment

Open access


The aim of this study is the design, manufacture, and development of a metallic rehabilitation device (titanium frame structure) that is created with a printing process. Product design is inspired by the Computed Tomography (CT) based reconstruction method, during which a metallic frame structure is designed that perfectly fits the retrieved bone surface. The internal structure of the designed metallic frames is a statically analysed three-dimensional construct which makes it possible to create individual product types. Constructs with different structure are checked by finite element analysis. Our goal is to establish a standardised manufacturing process, in which specific mechanical stressing can be carried out and optimal product type chosen, depending on different cases. At the end of this study, our solution of choice is demonstrated with surgical pictures.

[1] Bergendal T., Engquist B.: Implant-supported overdentures: a longitudinal prospective study. International Journal of Oral and Maxillofacial Implants 13/2. (1998) 253–262.

[2] Jingyin L., Shaoxia P., Jing D., Zhongjun M., Yobu F.: Influence of implant number on the biomechanical behvaiour of mandibular implant-retained/supported overdentures: A three-dimensional finite element analysis. Journal of Dentistry 41/3. (2013) 241–249.

[3] Lidellow G., Henry P.: The immediately loaded single implant-retained mandibular overdenture: a 36-month prospective study. International Journal of prosthodontics 23/1. (2010) 13–21.

[4] Mericske-Stren R. D., Taylor T. D., Belser U.: Management of the edentulous patient. Clinical Oral Implants Research 11. (2000) 108–125.

[5] Meijer H. J., Raghoebar G. M., Batenburg R. H., Visser A., Vissink A.: Mandibular overdentures supported by two or four endosseous implants: a 10-year clinical trial. Clinical Oral Implants Research, 20/7 (2009) 722–728.

[6] Weinberger L. A.: The biomechanics of force distribution in implant-supported prostheses. International Journal of Oral and Maxillofacial Implants 17/5 (1993) 19–31.

[7] Gotfredsen K., Berglundh T., Lindhe J.: Bone reactions adjacent to titanium implants subjected to static load of different duration. Clinical Oral Implants Research, 12/6 (2001) 552–558.

[8] Frost H. M.: Bone „mass” and the „mechanostat”: a prosposal. Anatomical Record 219/1. (1987) 1–9.

[9] Tepper G., Haas R., Zechner W., Krach W., Watzek G.: Three-dimensional finite element analysis os implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clinical Oral Implants Research 13/6. (2002) 657–665.

[10] Lindhae J., Meyle J., on behalf of Group D of the European Workshop on Periodontology: Peri-implant disease: Consensus Report of the Sixth Europen Workshop on Periodontology. Journal of Clinical Periodontology 35/8. (2008) 282–285.

[11] Renvert S., Quirynen M.: Risk indicators for peri-implantitis. A narrative rewiev. Clinical Oral Implants Research 26/11. (2015) 15–44.

[12] Malevez C., Abarca M., Durdu F., Daelemans P.: Clinical outcome of 103 consecutive zygomatic implants: a 6-48 months follow-up study. Clinical Oral implants Research 15/1. (2004) 18–22.

[13] Neyt L., De Clercq C. A., Abeloos J. V. Mommaerts M. Y.: Reconstruction of the severely resorbed maxilla with a combination of sinus augmentation, onlay bone grafting, and implants. Journal of Oral and Maxillofacial Surgery 55/1. (1997) 1397–1401.

[14] Leiser Y., Shilo D., Wolff A., Rachmiel A.: Functional recontsruction in mandibular avulsion injuries. The Journal Craniofacial Surgery, 27/8. (2016) 2113–2116.

[15] Li B., Zhang L., Sun H., Yuan J., Shen S. G. F., Wang X.: A novel method of computer aided orthognathic surgery using individual CAD/CAM templates: a combination of osteotomy and repositioning quides. British Journal of Oral Maxillofac Surgery 51/8. (2013) 239–244.

[16] Rachmiel A., Shilo D., Blanc O., Emodi O.: Reconstruction of complex mandibular defects using integrated dental custom-made titanium implants. British Journal of Oral and Maxillofacial Surgery 55/4. (2017) 425–427.

[17] Sing S. L., An J., Yeong W. Y., Wiria F. E.: Laser and Electron-Beam Powder-Bed Additive Manufacturting of Metallic Implants: A review on process, materials and design. Journal of Orthopeadic Research 34/3. (2015) 369–385.

[18] Sudarmadji N., Tan J. Y., Leong K. F., Chua C. K., Loh Y. T.: Investigation of the mechanical properties and porosity relationship in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomaterialia 7/2. (2011) 530–537.

[19] Yeong W. Y., Sudarmajdi N., Yu H. Y., Leong K. F., Venkatraman S. S., Boey Y. C. F., Tan L. P.: Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomaterialia 6/6. (2009) 2028–2034.

[20] Wiria F. E., Leong K. F, Chua C. K, Liu Y.: Poly-ε-caprolactone/hydroxyapatite for tissue engineeringscaffold fabrication via selective laser sintering. Acta Biomaterialia 3/1. (2007) 1–12.

[21] Yang S. F., Leong K. F., Du Z. H., Chua C. K.: The desing of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Engineering 8/1. (2002) 1–11.

[22] Yeong W. Y., Chua C. K., Leong K. F., Chandrasekaran M.: Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology 22/12. (2004) 643–652.

[23] Van Noort R.: Titanium: the implant material of today. Journal of Materials Science 22/11. (1987) 3801–3811.

[24] Rack H. J., Quazi J. I.: Titanium alloys for biomedical applications. Materials Science and Engineering 26/8. (2006) 1269–1277.

[25] Long M.; Rack H. J.: Titanium alloys in total joint replecamneta materials science prespective. Biomaterials 19/18. (1998) 1621–1639.

[26] Cheng A., Humayun A., Cohen D. J., Boyan B. D., Schwartz Z.: Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6/4. (2014) 1-12.

[27] Zhao G., Zinger O., Schwartz U., Wieland M., Landolt D., Boyan B. D.: Osteobalst-like cells are sensitive to submicron-scale surface structure. Clinical Oral implant Research 17/3. (2006) 258–264.

[28] Zinger O., Zhao G., Schwartz Z., Simpson J., Landolt D., Boyan B.: Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 26/14 (2005) 1837–2847.

[29] Bain C. A., Moy P. K.: The association between the failure of dental implants and cigarette smoking. International Journal of Oral and Maxillofacial Implants 8/6. (1993) 609–615.

[30] Geng J. P., Tan K. B., Liu G. R.: Application of finite element analysis in implant dentistry: a review of the literature. The journal of Prosthetic Dentistry, 85/6 (2001) 585–598.

[31] Rieger M. R., Adams W. K., Kinzel G. L.: A finite element survey of eleven endosseous implants. The Journal of prosthetic Dentistry 63/4. (1990) 457–465.

[32] Chun H. J., Cheong J. H., Han J. H., Heo S. J., Chung J. P., Rhyu I. C., Choi Y. C., Baik H. K., Ki Y., Kim M. H.: Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation, 29/6. (2002) 565–574.

[33] Himmlová L., Dostálová T., Kácovsky A., Konvicková S.: Influence of implant length and diameter on stress distribution: a finite element analysis. The Journal of Prosthetic Dentistry 91/1. (2004) 20–25.

[34] Chun H. J., Shin H. S., Han C. G., Lee S. H.: Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. International Journal of Oral and Maxillofacial Implants 21/2 (206) 195–202.

[35] Meijer H. J., Starmans F. J., Steen W. H., Bosman F.: Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite-element study. Journal of Oral Rehabilitation 23/11. (1996) 757–763.

[36] Alkan I., Sertgöz A., Ekici B.: Influence of occlusal forces on stress distribution in preloaded dental implant screws. The Journal of Prosthetic Dentistry 91/4. (2004) 319-325.

[37] Kitagawa T., Tanimoto Y., Nemoto K., Aida M.: Influence of cortical bone quality on stress distribution in bone around dental implant. Dental Materials Journal 24/2. (2005) 219–224.

[38] Lin C. L., Kuo Y. C., Lin T. S.: Effects of dental implant length and bone quality on biomechanical responses in bone around implants: a 3D non-linear finite element analysis. Biomedical Engineering: Applications, Basis and Communications, 17/1. (2005) 44–49.

[39] Saab X. E., Griggs J. A., Powers J. M., Engelmeier R. L.: Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: a finite element study. The Journal of prosthetic Dentistry 97/2. (2007) 85–92.

[40] Natali An. N., Pavan P. G., Ruggero A. L.: Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis. Dental Materials 22/4. (2006) 388–395.

[41] Bidez M. W., Misch C. E.: Issues in bone mechanics related to oral implants. Implant Dentistry 1/4. (1992) 15–44.

[42] Stegaroiu R., Takahiro S., Haruka K., Osamu M.: Influence of restoration type on stress distribution in bone around implants: a three-dimensional finite element analysis. International Journal of Oral & Maxillofacial 13/1. (1998) 82–90.

[43] Simon B. R., Woo S. L. Y., Olmstead S. R., McCarty M. P., Jemmott G. F., Akeson W. H.: Evaluation of one-, two-, and three-dimensional finite element and experimental models of internal fixation plates. Journal of Biomechanics 20/2. (1977) 79–86.

[44] Quirynen M., Naert I., Van Steenberghe D.: Fixture design and overload influence marginal bone loss and fixture success in the Brånemark system. Clinical Oral Implants Research 3/3. (1992) 104–111.

[45] Adell R., Lekholm U., Rockler B., Bränemark P. I.: A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery 10/6. (1981) 387–416.

[46] Meijer H. J. A., Kuiper J. H., Starmans F. J. M, Bosman F.: Stress distribution around dental implants: Influence of superstructure, length of implants and height of mandible. The Hournal of Prosthetic Dentistry, 68/1. (1992) 96–102.

[47] Meijer H. J. A., Starmans F. J. M., Steen W. H. A., Bosman F.: Location of implants in the interforaminal region of the mandible and the consequences for the design of the superstructure. Journal of Oral Rehabilitation 21/1. (1994) 47–56.

[48] Wakabayashi N., Ona M., Suzuki T., Igarashi Y.: Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry, 36/7 (2008) 463–471.

[49] Kónya J., Kulcsár K.: Additív technológiával készülő egyéni implantátumok lézeres mikro hegesztésének vizsgálata. Acta Materialia Transylvanica 2/1. (2019)

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 12
PDF Downloads 30 30 7