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The effect of magnetic field dependent (MFD) viscosity on the onset of convection in a ferromagnetic fluid layer heated from below 

and cooled from above in the presence of vertical magnetic field is investigated theoretically. The bounding surfaces are considered to 
be either rigid-ferromagnetic or stress free with constant heat flux conditions. The resulting eigenvalue problem is solved using the 
Galerkin technique and also by regular perturbation technique. It is found that increase in MFD viscosity and decrease in magnetic 
number is to delay the onset of ferroconvection, while the nonlinearity of fluid magnetization has no influence on the stability of the 
system. 
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1.  INTRODUCTION 
ERROFLUIDS are stable colloidal suspensions consisting 
of single-domain magnetic particles coated with a 
surfactant and immersed in a carrier fluid. The particles 

are commonly magnetite and of order 10 nm in diameter, 
while the carrier liquid is typically an oil or water base. 
Ferrofluids are of particular interest since there are no known 
natural  occurrences of these fluids, and in distinction to 
magnetohydrodynamics the flow phenomena occur without 
the need for electrical current, and thus in the absence of 
corresponding Lorentz forces. Thereafter, ferrofluids of 
various kinds have been developed and their application to 
engineering uses attempted. Presently, magnetic fluids are in 
wide use in seals, bearings, magnetostatic support, jet printers, 
separation of nonmagnetic particles, flow control and drag 
reduction, dampers, actuators, sensors, transducers, and 
medical applications. An authoritative introduction to this 
fascinating subject is amply provided in the literature [1], [2]. 
Thus, ferrofluids have received much attention in the scientific 
community.  

The magnetization of ferrofluids depends on the magnetic 
field, temperature, and density. Hence, any variations of these 
quantities induce change of body force distribution in the fluid 
and eventually give rise to convection in ferrofluids in the 
presence of a gradient of magnetic field. There have been 
numerous studies on thermal convection in a ferrofluid layer 
called ferroconvection analogous to Rayleigh-Benard 
convection in ordinary viscous fluids. The theory of 
convective instability in a horizontal layer of ferrofluid began 
with [3] and extensively continued over the years [4]-[10] and 
references therein. A variety of velocity and temperature 
boundary conditions on the onset of ferroconvection in an 
initially quiescent ferrofluid layer in the presence of a uniform 
magnetic field has been investigated recently [11]. Besides, 
studies have been made to understand the effect of different 
parameters on thermomagnetic convection of ferrofluids in a 
cylindrical geometry using the modern Taguchi technique [12] 

 
and heat transfer phenomena in a kerosene based ferrofluid in 
two cylinders with different dimensions using computation 
fluid dynamics technique [13]. Investigations have also been 
carried out to analyze magnetic convection of ferrofluids in 
enclosures [14]-[16].     

Thermal convection in ferromagnetic fluids is gaining 
much importance due to astounding physical properties. One 
such property is viscosity of the ferromagnetic fluid. Fluids 
with ferromagnetic properties may be formed by colloidal 
suspension of solid magnetic particles such as magnetite in a 
parent liquid. The viscosity of the magnetic fluid is predicted 
by dimensional analysis to be a function of the ratio of 
hydrodynamic stress to magnetic stress [17]. The effect of a 
homogeneous magnetic field on the viscosity of a fluid with 
solid particles possessing intrinsic magnetic moments has been 
investigated [18]. The effect of magnetic field dependent 
(MFD) viscosity on the onset of ferroconvection in a rotating 
medium [19] , with or without dust particles [20] and the non-
linear stability analysis [21] have been examined. All these 
studies are dealt with isothermal boundary conditions.  

The present study deals with the effect of MFD viscosity 
on the onset of convection in a ferromagnetic fluid layer in the 
presence of a uniform vertical magnetic field for different 
combinations of velocity boundary conditions with prescribed 
heat flux at the boundaries. Such a study is useful in the proper 
design of numerous devices and processes such as levitation 
accelerometers magneticfluids seals, direct energy converters 
and viscous dampers [17]. The resulting eigenvalue problem is 
solved using the Galerkin technique and  also regular 
perturbation technique for both boundaries rigid (rigid-rigid), 
both boundaries free (free-free), and lower boundary rigid  and 
upper  boundary  free  (rigid - free)  boundary    combinations. 

To achieve the above objectives, the paper is organized as 
follows. Section 2 is devoted to mathematical formulation.  
The method of solution is discussed in Section 3. In Section 4, 
the numerical results presented are discussed and some 
important conclusions follow in Section 5.  
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2.  MATHEMATICAL FORMULATION 
The system under consideration is an initially quiescent 

horizontal ferrofluid layer of characteristic thickness d in the 
presence of an applied magnetic field Ho  in the vertical 
direction. The lower and the upper boundaries are maintained 
at constant temperature 0T  and ( )1 0T T<  respectively, and 
thus constant temperature difference ( )1 0T T T∆ = −  is 
maintained between the boundaries. A Cartesian co-ordinate 
system (x, y, z) is used with the origin at the bottom of the 
layer and z-axis is directed vertically upward. Gravity acts in 
the negative z-direction, ˆg g k= −

r , where k̂  is the unit vector 
in the z-direction. The fluid is assumed to be incompressible 
having variable viscosity, given by  0 (1 )Bη η δ= + ⋅

r r
,  where 

δ
r

 is the variation coefficient of magnetic field dependent 
viscosity and is considered to be isotropic [19], 0η  is taken as 
viscosity of the fluid when the applied magnetic field is absent 
and  ( , , )B B B Bx y z=

r
 is the magnetic induction. 

Experimentally, it has been demonstrated that the magnetic 
viscosity has got exponential variation, with respect to 
magnetic field [22]. As a first approximation for small field 
variation, linear variation of magnetic viscosity has been used. 
The equations governing the flow of an incompressible 
ferrofluid are [1,2] :  

                               0q∇⋅ =
r ,                                  (1) 
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                 [1 ( )]0 0T Ttρ ρ α= − − ,                         (4) 

           0B∇⋅ =
r

, 0H∇× =
r

 or H ϕ= ∇
r

,          (5a,b) 

                        ( )0B M Hµ= +
r r r

,                             (6) 

                      ( ),
H

M M H T
H

=

r
r

,                           (7) 

        ( ) ( )0 0 0M M H H K T Tχ= + − − − .              (8) 

Here, ( , , )q u v w=
r  is the velocity vector, M

r
 the 

magnetization, H
r

 the magnetic intensity of the fluid, p the 

pressure, t  the time, [ ( ) ] / 2TD q q= ∇ + ∇
r r  the rate of strain 

tensor, ρ  the fluid density, 0ρ the density at 0T T= , 0µ  the 

magnetic permeability of vacuum, kt  the thermal conductivity 
of the fluid, ,V HC  the specific heat at constant volume and 
magnetic field, tα  the thermal expansion coefficient, φ  the 
magnetic potential, ,0 0( / )H TM Hχ = ∂ ∂  the magnetic 

susceptibility, 
0 0

( / ) ,K M T H T= − ∂ ∂  the pyromagnetic co-

efficient , 2 2 2 2 2 2 2/ / /x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  the Laplacian 
operator and 0 0 0( , )M M H T= . 
It is clear that there exists the following solution for the basic 
state: 
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where /T dβ = ∆  is the  temperature gradient  and  the 
subscript b denotes the basic state. To investigate the 
conditions under which the quiescent solution is stable against 
small disturbances,  we  consider  a  perturbed  state  such  that   

                     

,
( ) ',
( ) ',
( ) ,

( ) ,

( )

q q
p p z pb

zb
T T z Tb
H H z Hb
M M z Mb

η η η

′=
= +

= +
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′= +

′= +

r r

r r r

r r r

                           (10) 

where q 'r , p ' ,  'η , T ' , H '
r

 and M '
r

 are perturbed variables 
and are assumed to be small.  
Substituting Eq. (10) into Eqs. (6) and (7), and using Eq.(5), 
we obtain (after dropping the primes)     

                         

( )

01 ,
0

01 ,
0

1   .

y y y

M
H M Hx x xH

M
H M H

H

H M H K Tz z zχ

⎛ ⎞
+ = +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ = +⎜ ⎟⎜ ⎟
⎝ ⎠

+ = + −

                  (11) 

Again substituting Eq. (10) into the momentum Eq. (2), 
linearizing, eliminating the pressure term by operating curl 
twice and using Eq. (11)  the z-component of the resulting 
equation   can   be  obtained  as  ( after  dropping  the  primes ) 
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where 2 2 2 2 2/ /h x y∇ = ∂ ∂ + ∂ ∂  is the horizontal Laplacian 
operator and 0 0 0 0[1 ( )]b M Hη η δ µ= + + .  

The energy Eq. (3), after using Eq. (10) and linearizing, takes 
the form (after dropping the primes) 
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                (13) 

where 0 0 0 , 0 0V HC C H Kρ ρ µ= + . Equations 5(a, b), after 
substituting  Eq. (10)  and  using  Eq. (11), may be  written  as  
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M
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             (14) 

Since the principle of exchange of stability is valid [3], the 
normal mode expansion of the dependent variables is assumed 
in the form 

          { } { } [ ], , ( ), ( ), ( ) exp ( )w T W z z z i x myϕ = Θ Φ +l        (15) 

where l  and m are wave numbers in the x and y directions, 
respectively. On substituting Eq. (15) into Eqs. (12) - (14) and 
non-dimesionalizing the variables by setting 
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where 0 0/v η ρ=  is the kinematic viscosity and 0 0/tk Cκ ρ=  
is the effective thermal diffusivity, we obtain  

        
( )

2 2 2 2
1

2
1

(1 )( )

1 0

D a W a R M D

a R M

δ+ − + Φ −

+ Θ =
            (17) 

            2 2
2( ) (1 ) 0D a M W− Θ+ − =                   (18) 

                2 2
3( ) 0D a M D− Φ − Θ = .                    (19) 

Here, /D d dz=  is the differential operator, 2 2a m= +l  is 
the overall horizontal wavenumber, 4 /tR g dα β ν κ=  is the 

thermal Rayleigh number, 2
1 0 0/(1 ) tM K gµ β χ α ρ= +  is the 

magnetic number, 2
2 0 0 0 0/ (1 )M T K Cµ ρ χ= +  is the 

magnetic parameter and 3 0 0(1 / ) /(1 )M M H χ= + +  is the 
measure of nonlinearity of magnetization. The typical value of 

2M  for magnetic fluids with different carrier liquids turns out 
to be of the order of 10-6 and hence its effect is neglected as 
compared to unity.  
The bounding surfaces (rigid or free) of the ferrofluid layer are 
considered to be ferromagnetic and insulated to temperature 
perturbations. Thus, on the rigid boundary, 

0W DW D= = Φ = Θ =  and on the stress-free boundary 

2 0W D W D D= = Φ = Θ= .  

3.  METHOD OF SOLUTION 
Equations (17) – (19) together with the corresponding 

boundary conditions constitute an eigenvalue problem with R  
as an eigenvalue. The method of solution is described in the 
following sub-sections. 

3.1  Solution by galerkin technique 
The Galerkin method is used to solve this problem as 

explained [23]. In this method, the test (weighted) functions 
are the same as the base (trial) functions. Accordingly, W , Θ  
and Φ  are written as 
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where Ai , iC  and iD  are the unknown constants to be 
determined. The base functions ( )iW z , ( )i zΘ  and ( )i zΦ  are 
generally chosen such that they satisfy the corresponding 
boundary conditions but not the differential equations.  
For rigid-rigid, rigid-free and free-free boundaries the base the 
base functions are, respectively  
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and  
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where * 'iT s   are the modified Chebyshev polynomials. The 
above trial functions satisfy all the boundary conditions. 
Multiplying Eq. (17) by ( )iW z , Eq. (18) by ( )i zΘ  and Eq. 
(19) by ( )i zΦ ; performing the integration by parts with 
respect to z between z = 0 and z = 1 and using the boundary 
conditions, we obtain a system of linear homogeneous 
algebraic equations in  Ai , iC  and iD . A non-trivial solution 
to these equations leads to a relation involving the physical 
parameters R ,δ , 1M , 3M   and the wave number  a in the 
form 1 3( , , , , ) 0f R M M aδ = .  The critical value of R  (i.e., 

cR ) is determined numerically with respect to a  for different 
values of δ , 1M  and 3M . 

3.2 Solution by regular perturbation technique 
Since the critical wave number is negligibly small when 

the boundaries are insulated to temperature perturbations 
(i.e., 0DΘ =  at 0, 1z = ), the eigenvalue problem is also 
solved analytically using regular perturbation technique with 
wave number a as a perturbation parameter. Accordingly, the 
variables  W ,  Θ   and  Φ are  expanded  in  powers of   a2  as  

 

             2
0 0 0 1 1 1( , , ) ( , , ) ( , , )W W a WΘ Φ = Θ Φ + Θ Φ + ⋅⋅⋅ ⋅    (24) 

 

Substituting Eq. (24) into Eqs.(17) - (19) as well as in the 
boundary conditions, the terms of different orders are 
collected and solved. The solution to the zero-th order 
equations for rigid-rigid and rigid- free boundaries is found to 
be 0 00, 1W = Θ =  and 0 0Φ = , while the solution for free-
free boundaries is given by 0 00, 1W = Θ =  and 0 1Φ = . The 
general solution for velocity at the first order for rigid-rigid, 
rigid-free and free-free boundary conditions, respectively is 
given by  
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and    
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1
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R M z z z

W
δ

+ − +
=

+
                 (25c) 

An expression for the critical Rayleigh number for rigid-rigid, 
rigid-free and free-free boundary conditions is obtained from 
the solvability condition  

                             
1

1
0

1 W dz= ∫ ,                                (26) 

respectively,  in the form 

                        
1

720 (1 )
,

(1 )cR
M

δ+
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1
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(1 )cR

M
δ+

=
+

                           (27b) 

and 

                       
1

310 (1 )
(1 )cR

M
δ+

=
+

.                          (27c) 

It is interesting to check the above relations for some 
special cases. Letting 0δ = , Eqs. (27a,b,c) respectively, 
reduce to 

                          
1

720
,

(1 )cR
M

=
+

                            (28a) 

                         
1

320
,

(1 )cR
M

=
+

                           (28b) 

                         
1

120
(1 )cR

M
=

+
                            (28c) 

and thus recovering the results for the case of constant 
viscosity [11]. When 1 0M =  (i.e. ordinary viscous fluid), 
Eqs. (28a,b,c) reduce to the critical Rayleigh numbers of 

720cR = , 320 and  120 which are the known exact values  for 
the rigid-rigid, rigid-free and free-free boundaries, 
respectively. From Eqs. (27a,b,c), it is interesting to note that 
the nonlinearity of fluid magnetization (i.e., 3M ) has no effect 
on the onset of convection; a result which is revealed by 
numerical computations carried out in the previous section. 
Since at the onset of convection 0ca = (very large wave 
length), one would expect that 3M  has no effect on the 
stability of the system (see Eq.19). The numerically computed 
values of cR  for different values of δ and 1M  are compared 
in Table 1 with those obtained using regular perturbation 
technique. We note that the results obtained from simple 
regular perturbation technique coincide exactly with those 
obtained from time consuming numerical methods and thus 
provide  a  justification  for  the  results  obtained  analytically. 

4.  RESULTS AND DISCUSSION 
The effect of MFD viscosity δ  on the onset of 

convection in a ferrofluid layer in the presence of a uniform 
vertical magnetic field is studied. The boundaries are 
considered to be insulated to temperature perturbations and the 
resulting eigenvalue problem is solved numerically using the 
Galerkin technique as well as analytically by employing 
regular perturbation technique with wave number as a 
perturbation parameter. The critical eigenvalue cR  obtained 
numerically and analytically for different values of 1M , δ  
and for different boundary conditions are presented in Table 1. 
Since the rigid boundaries suppress the perturbations to a 
greater extent compared to the free boundaries, we note that 
the critical Rayleigh number cR  for rigid-rigid boundaries is 
the greatest, followed by rigid-free boundaries and the least 



MEASUREMENT SCIENCE REVIEW, Volume 9, No. 3, 2009 
 

 79

for free-free boundaries. The table also predicts the effect of 
δ , which represents the effect of viscosity variation with 
magnetic field, on the criterion for the onset of convection. 
We note that increase in δ , though the effect is not so 
significant, has a stabilizing effect on the system.  That is, the 
effect of increase in the value of δ  is to delay the onset of 
ferroconvection. An increase in the value of 1M  is to decrease 
the value of cR  and thus its effect is to augment 
ferroconvection  due  to  an   increase  in  the  magnetic  force.   

The vertical velocity eigenfunctions ( )W z  for different 
boundary combinations are presented in Fig.1 and 2 for 
different values of δ and 1M , respectively. As can be seen, 
increase in the value of   MFD viscosity δ  (see Fig.1) is to 
inhibit the ferrofluid flow and hence its effect is to delay the 
onset of ferroconvection. However, increase in the value of 

1M  (see Fig.2) is to accelerate the ferrofluid flow and hence 
its   effect   is    to   hasten   the    onset   of     ferroconvection. 
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Fig.1   Vertical velocity eigenfunction for different values of δ  when 1 2M =  
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Fig.2   Vertical velocity eigenfunction for different values of 1M  when 0.02δ =  

Table 1.  Critical Rayleigh number cR  for various values of 1M , δ  and for different boundaries 

1M  Rigid-Rigid  boundaries 
0δ =      0.05δ =      0.09δ =  

   cR            cR             cR  

      Rigid-Free boundaries 
0δ =      0.05δ =      0.09δ =  

   cR              cR               cR  

      Free-Free boundaries 
0δ =      0.05δ =      0.09δ =  

  cR           cR               cR  
0 
1 
2 
3 
4 
5 

720 
360 
240 
180 
144 
120 

756 
378 
252 
189 

151.2 
126 

784.8 
392.4 
261.6 
196.2 
156.9 
130.8 

320 
160 

106.66 
80 
64 

53.33 

336 
168 
112 
84 

67.2 
56 

348.8 
174.4 

116.26 
87.2 
69.76 
58.13 

120 
60 
40 
30 
24 
20 

126 
63 
42 

31.5 
25.2 
21 

130.8 
65.4 
43.6 
32.7 

26.16 
21.8 
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5.  CONCLUSIONS 
From the foregoing study, it is observed that an increase 

in the value of δ  and decrease in 1M  is to stabilize the 
ferrofluid motion against the convection. In contrast to the 
isothermal boundaries case, the nonlinearity of fluid 
magnetization 3M  is found to have no effect on the stability 
of the system. The critical eigenvalues obtained from the 
combination of analytical and numerical techniques 
complement   very  closely  with   Each  other   and   note  that  

rigid-rigid rigid-free free-free( ) ( ) ( ) .c c cR R R> >  
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