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In this paper we introduce two confidence and two prediction regions for statistical characterization of concentration measure-
ments of product ions in order to discriminate various groups of persons for prospective better detection of primary lung cancer.
Two MATLAB algorithms have been created for more adequate description of concentration measurements of volatile organic
compounds in human breath gas for potential detection of primary lung cancer and for evaluation of the appropriate confidence
and prediction regions.
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1. Introduction

IN THIS PAPER we present our contribution to the test
system for statistical analysis of concentration measurements

of volatile organic compounds (VOCs) in human breath gas for poten-
tial detection of primary lung cancer (PLC). In particular, we suggest
a method to determine two types of confidence regions and two types
of prediction regions for the VOC concentrations. The test system
is created in the frame of the EU-Project ”Breath-gas analysis for
molecular-oriented detection of minimal diseases” (BAMOD) and
is applicable also for the statistical analysis of VOC-measurements
on cell and bacterial cultures by proton-transfer-reaction mass spec-
trometry (PTR-MS), as well as for the analysis of human breath gas
concentration measurements based on selected-ion-flow-tube mass
spectrometry (SIFT-MS). The database with data from breath gas
samples of primary lung cancer patients and healthy individuals
measured by PTR-MS consists of concentration measurements of
product ions at 208 selected m/z values (mass-to-charge ratios),
namely, m/z from 22 to 230 excluding 37. The MATLAB algo-
rithm ”Test Of Degree” determines the optimal statistical model for
measured data. The MATLAB algorithm ”Intervals” computes the
proposed confidence and prediction regions.

2. Statistical model for repeated concentration

measurements

Let the random variable Yi,j , with its realization yi,j , be the
logarithm of the j-th independent concentration measurement of the
product ions at the i-th mass-to-charge ratio m/z. For the J inde-
pendent measurements of concentration of product ions at selected
m/z values we consider the linear regression model

Y = Xα + ε, (1)

where Y = (Y1,1, Y1,2, . . . , Y1,J , Y2,1, Y2,2, . . . , Y2,J , . . . ,
YI,1, YI,2, . . . , YI,J)′, X = II,I ⊗ 1J,1 is a IJ × I matrix, the
symbol ⊗ denotes the Kronecker product, α = (µ1, µ2, . . . , µI)

′

is a vector of unknown parameters, ε = (ε1,1, ε1,2, . . . , εI,J)′ is a
vector of normally distributed errors, i.e. ε ∼ N(0, σ2W), W =
diag(1/w1, . . . , 1/w1, 1/w2, . . . , 1/w2 . . . , 1/wI , . . . , 1/wI), σ2

is an unknown scalar factor of the covariance matrix and wi are the
weights of the measurements Yi,1, . . . , Yi,J that are inversely pro-
portional to the variances var(Yi,1), . . . , var(Yi,J). As a reasonable
approximation of the true values of the weights we use wi ≈ 1/s2

i

s2
i = 1

J−1

∑J

j=1(yi,j − ȳi)
2, where ȳi = 1

J

∑J

j=1 yi,j .
Further, we will assume that the valid model for the measure-

ments Y could be of the following form

Y = Uβ + ε, (2)

where

U =

⎛
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is a given IJ × (k + 1) matrix, xj , j = 1, 2, . . . , I are points, in
which are measurements done (in this case they are m/z values),
k ∈ {0, 1, . . . , J − 1}, β = (β0, β1, . . . , βk)′ is a vector of un-
known parameters, ε ∼ N(0, σ2W). Model (2) supposes, that the
mean values of Y are lying on a polynomial of degree k. It is easy
to see, that model (Y, Uβ, σ2W) is a submodel (see [1]) of the lin-
ear regression model (Y, Xα, σ2W). If Y satisfies the submodel
(Y, Uβ, σ2W) then (see [1], p. 143)

Fk =
(µ̂ − ν̂)′W−1(µ̂ − ν̂)/(I − (k + 1))

(Y − µ̂)′W−1(Y − µ̂)/(IJ − I)
∼ F(I−(k+1)),(IJ−I),

(3)
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where µ̂ = X(X′W−1X)−1X′W−1Y is the best linear unbiased es-
timator of E(Y) in the model (1) and ν̂ = U(U′W−1U)−1U′W−1Y
is the best linear unbiased estimator of E(Y) in the submodel (2).
TheMATLABalgorithm”Test Of Degree” is searching for the lowest
k, such that the hypotheses H0:”Measured data are not inconsistent
with the statement, that E(Y) is lying on the polynomial of k-th
degree”, is not rejected.

3. Confidence and prediction regions

Let Y ∼ N(Uβ; σ2W) and {(m/z)1, (m/z)2, . . . , (m/z)I} =
A where (m/z)i = xi, i = {1, 2, . . . , I} are the mass-to-
charge ratios for which the product ions concentrations were mea-
sured. Further, let xi = (1, xi, x

2
i , . . . , x

k
i )′ and let dxi

=√
x′

i(U
′W−1U)−1xi.

For chosen xi ∈ A the (1−α)100%-confidence interval for x′

iβ

is given as 〈
x′

iβ̂ − sdxi
t(IJ−(k+1))(1 − α/2),

x′

iβ̂ + sdxi
t(IJ−(k+1))(1 − α/2)

〉
,

(4)

where s2 = [(Y− Ŷ)′W−1(Y− Ŷ)]/(IJ − (k +1)) is the unbiased
estimator of σ2 and β̂ = (U′W−1U)−1U′W−1Y is the best linear
unbiased estimator of β, Ŷ = Uβ̂, and further, t(IJ−(k+1))(1−α/2)
is the (1 − α/2) quantile of the t-distribution with (IJ − (k + 1))
degrees of freedom.

At least (1 − α)100%-confidence region for x′

iβ for all xi ∈ A
is given as〈

x′

iβ̂ − sdxi

√
(k + 1)F(k+1,(IJ−(k+1)))(1 − α),

x′

iβ̂ + sdxi

√
(k + 1)F(k+1,(IJ−(k+1)))(1 − α)

〉
,

(5)

where F(k+1,(IJ−(k+1)))(1 − α) is the (1 − α) quantile of the F -
distribution with k + 1, (IJ − k − 1) degrees of freedom.

Interval, which covers the next realization of the random variable
Yxi

= x′

iβ +εxi
, εxi

∼ N(0, σ2

wi

), xi ∈ A with probability (1−α)

is 〈
x′

iβ̂ − s

√
1
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+ d2
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t(IJ−(k+1))(1 − α/2),
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〉
.

(6)

This random interval is called the (1 − α)100%-prediction interval
for a single future observation Yxi

.
At least (1 − α)100%-prediction region for Yxi

for all xi ∈ A
is 〈

x′

iβ̂ − s

√
1

wi

+ d2
xi

√
IF(I,(IJ−(k+1)))(1 − α),

x′

iβ̂ + s

√
1
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+ d2
xi

√
IF(I,(IJ−(k+1)))(1 − α)

〉
.

(7)

In the situation, when k << I , the tolerance region could be more
suitable than the prediction region (7), for more details see [2], [3].

The MATLAB algorithm ”Intervals” computes the confidence
interval (4) and prediction interval (6) for chosen k and xi ∈ A and
also the confidence region (5) and prediction region (7), respectively.

4. Some illustrative examples

Let us demonstrate the above mentioned confidence and predic-
tion regions on the data, where the concentrations of selected VOCs
were determined in exhaled breath samples of healthy subjects and of
subjects with primary lung cancer by proton-transfer-reaction mass
spectrometry (PTR-MS) in ppb (particles-per-billion) levels, sam-
pled and measured at the Medical University of Innsbruck, Austria,
during years 2006 and 2007. The measured counts were transformed
using the knowledge of chemistry kinetics and reaction constants to
concentrations of volatile organic compounds in ppb levels. The
medians from at least 3 repeated concentration measurements of the
selected compounds (m/z values) were taken per each breath sample
and were used for analysis (in all cases is α = 0.05).
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Figure 4

Figure 1 presents a plot of confidence intervals given by equation
(4) (symbol ×), the confidence region given by (5) (symbol ·), the
prediction intervals given by (6) (symbol ◦), and the prediction re-
gion given by the equation (7) (symbol ”filled triangle”) for mass-to-
charge ratios 28,31,33,42,59,61,63,69,79,97,105,109,123 from J =
300 repeated measurements evaluated from healthy subjects. The
estimated expected value E(Y) = ν̂ = U(U′W−1U)−1U′W−1Y
for the model (2) with lowest k = 12 is lying on the dashed line.

Figure 2 presents a plot of the prediction region
given by the equation (7) for mass-to-charge ratios
28,31,33,42,59,61,63,69,79,97,105,109,123 from J = 300 repeated
measurements evaluated from healthy subjects with further proper
measurements done on health subjects (10 points). Estimated ex-
pected value E(Y) for the model (2) with lowest k = 12 is lying on
the dashed line.

Figure 3 presents a plot of the prediction region
given by the equation (7) for mass-to-charge ratios
28,31,33,42,59,61,63,69,79,97,105,109,123 from J = 300 repeated
measurements evaluated from healthy subjects with proper mea-
surements done on subjects with primary lung cancer (50 points).
Estimated expected valueE(Y) for the model (2)with lowest k = 12
is lying on the dashed line.

Figure 4 presents a plot of the prediction region
given by the equation (7) for mass-to-charge ratios
28,31,33,42,59,61,63,69,79,97,105,109,123 from J = 300 repeated
measurements evaluated from healthy subjects (symbol ”filled tri-
angle”) with proper prediction region given by the equation (7)
evaluated from J = 300 subjects with primary lung cancer (symbol
◦). Estimated expected value E(Y) for the model (2) with lowest
k = 12 from healthy subjects is located on the dashed line with
(symbol ×) and estimated expected value E(Y) for the model (2)
with lowest k = 12 from subjects with primary lung cancer is located
on the dashed line with (symbol +).

5. Discussion and conclusions

The repeated measurements on tested persons are fully charac-
terized by the suggested confidence and prediction regions, given in
(4), (5), (6), (7). According to these regions we can make judgments
about the repeatability and the random error of the measuring method

and/or measuring device. We can explicitly see whether other mea-
surements differ from measurements on the tested person and/or to
what extend they are different. It is expected that by using the above
mentioned statistical tools it would be possible to better character-
ize also some groups of subjects in interest (hospital staff, cancer-
smokers, control-smokers, cancer-nonsmokers, control-nonsmokers,
etc.). Unfortunately, no differences have appeared in examples from
section (4). In Figure 3, it is visible that almost all measurements
done on subjects with primary lung cancer are lying in the predic-
tion region given by the equation (7) for healthy subjects. Therefore
we cannot see any differences between healthy subjects and subjects
with primary lung cancer at these mass-to-charge ratios (m/z val-
ues). From the next example, Figure 4, we can deduce that estimated
expected values E(Y) from healthy subjects and from subjects with
primary lung cancer are nearly the same. Further, we have not found
differences between healthy subjects and subjects with primary lung
cancer on other tested combinations either. Based on this finding we
suspect that we have no evidence that it is possible to detect primary
lung cancer from volatile organic compounds in human breath gas
through this suggested method.
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