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The empirical Bayes Gaussian rule, which in the normal case yields good values of the probability of total error, may yield high
values of the maximum probability error. From this point of view the presented modified version of the classification rule of Broffitt,
Randles and Hogg appears to be superior. The modification included in this paper is termed as a WR method, and the choice of its
weights is discussed. The mentioned methods are also compared with the K nearest neighbours classification rule.
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1. Introduction

Suppose that X1 =(X11, . . . ,X1n1
), X2 = (X21, . . . ,X2n2

)
are observed data consisting of m-dimensional column vectors;

here X1 is a random sample from an m-dimensional population Π1

and X2 a random sample from another m-dimensional population
Π2. Let Z denote an m-dimensional observed column vector, which
is assumed to belong to one of the populations. The task of the
discriminant analysis is to classify Z by means of X1, X2 either as
belonging to the population Π1 or to Π2. The quality of the classifi-
cation rule is judged by means of probability P (2|1) that the element
belonging to Π1 is assigned to Π2, by probability P (1|2) that the
element belonging to Π2 is assigned to Π1 and by the probability
of the total error

PTE = p1P (2|1) + p2P (1|2) , (1)

where pj denotes the probability that the observed value Z belongs
to the population Πj (i.e., the prior probability of the population Πj).
The quantity (1) is used to express the probability of the wrong deci-
sion in the whole classification process. In addition to this, we prefer
to consider the quantity

MPE = max{P (2|1) , P (1|2)} (2)

because this maximum probability of error assigns the same impor-
tance to both populations regardless of the frequency with which the
observed vector Z is generated by the particular population Π1 or
Π2.

The aim of the paper is to present a classification rule which can
be expected to yield good results when the probability (2) is chosen
as a criterion of quality. This new rule, proposed and implemented
by the author of this paper in the technical report [5], is described
in Section 2. Classical rules, with which we compare the new rule
by means of simulation results, are described in Section 3. Simula-
tion estimates of the power of the mentioned classification rules are
presented in Section 4 and these results are discussed in Section 5.

In what follows we use for j = 1, 2 the notation

Xj =
1

nj

nj
∑

i=1

Xji , Sj =
1

nj

nj
∑

i=1

(Xji − Xj)(Xji − Xj)
′. (3)

2. Weighted Ranks Rule

Now we are going to present the modification of the rank based
classification procedure, described in [2] and [3]. The modification
consists in using a new target discriminant function employed in

computation of the ranks and in involving weights in the decision
process for the sake of achieving a better PTE.

The idea of the classification rule follows the approach worked
out in [2] and [3] in the sense that the observation which has to be
classified is added to a training set and the obtained ranks are used for
classification. More precisely, observed vector Z is first added to X1

observations and the rank RX1
(Z) of the target function DX1

(Z)
is computed, then Z is added to X2, the rank RX2

(Z) of the target
function DX2

(Z) is obtained and the classification is carried out by
means of the values of these ranks. Thus, add the observation Z to
the X1 observations and compute

X̃1 = 1
n1+1

(

n1
∑

i=1

X1i + Z

)

,

S̃1 =

= 1
n1+1

(

n1
∑

i=1

(X1i − X̃1)(X1i − X̃1)′ + (Z − X̃1)(Z − X̃1)′
)

the estimates based on the extended sample. Define the functions of
the argument U ∈ Rm by the formula

t̃1(U) = (U − X̃1)′ (S̃1)−1(U − X̃1

)

,

t2(U) = (U − X2)′ (S2)−1(U − X2) ,

put

DX1
(U) =











t2(U) − t̃1(U) if t2(U) > t̃1(U),

log
( t2(U)

t̃1(U)

)

if t2(U) ≤ t̃1(U),

and compute the ranks RX1
(Z), RX1

(X11), RX1
(X12), . . . ,

RX1
(X1n1

) of the numbers DX1
(Z), DX1

(X11), DX1
(X12), . . . ,

DX1
(X1n1

) in their ordering according to the magnitude. Further,
add the observation Z to the X2 observations, compute

X̃2 = 1
n2+1

(

n2
∑

i=1

X2i + Z

)

,

S̃2 =

= 1
n2+1

(

n2
∑

i=1

(X2i − X̃2)(X2i − X̃2)′ + (Z − X̃2)(Z − X̃1)′
)

and define the functions of the argument U ∈ Rm by the formula

t̃2(U) = (U − X̃2)′ (S̃2)−1(U − X̃2

)

,

t1(U) = (U − X1)′ (S1)−1(U − X1) .
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Put

DX2
(U) =











t1(U) − t̃2(U) if t1(U) > t̃2(U),

log
( t1(U)

t̃2(U)

)

if t1(U) ≤ t̃2(U),

and compute the ranks RX2
(Z), RX2

(X21), RX2
(X22), . . . ,

RX2
(X2n2

) of the numbers DX2
(Z), DX2

(X21), DX2
(X22), . . . ,

DX2
(X2n2

) in their ordering according to the magnitude. In accor-
dance with the importance of the population Π2, choose its weight
we > 0. The classification rule is

If
RX1

(Z)

n1 + 1
≥ we

RX2
(Z)

n2 + 1
classify Z ∈ Π1,

otherwise classify Z ∈ Π2.
(4)

In this rule the inequality ≥ is employed to simplify computation be-
cause the validity of the equality occurs in practice either very rarely
or not at all. Typically, the sizes of the training sets are not equal and
for the sake of the clarity of the use of the weights we shall label by
Π1 the population with a larger sample size (hence from now on the
inequality n1 ≥ n2 holds), the rule (4) will be referred to as the WR
method (WR stands for weighted ranks). We remark that the WR
method turned out to be useful in the classification of the observed
data concerning doping control studied in [5]. In what follows we
shall investigate three particular values of the weight:

we = 1 , we =
n2

n
, n = n1 + n2, we =

n2

n1
.

The choice we = 1, which will be called the equal weights, can
be expected to result in smaller MPE from (2), while the other two
values of the weight will often lead to a smaller total error (1).

3. Some Alternative Classical Rules

Let for j = 1, 2

p̂j =
nj

n1 + n2
.

The following classification rule

Assign Z to Πj if

(Z − Xj)
′
Sj

−1(Z − Xj) + log(det(Sj)/(p̂2
j )) =

= min
t

[

(Z − Xt)
′

St
−1(Z − Xt) + log(det(St)/(p̂2

t ))
]

,

(5)
is obtained by plugging the estimates Xj, Sj and p̂j of the mean, co-
variance matrix and the probability pj , into the Bayes classification
rule (here log denotes the logarithm to the base e). It is well-known
(cf. [1], pp. 321-322), that the mentioned Bayes rule minimizes the
probability PTE of the total error; the rule (5) will be referred to
as EBN (empirical Bayes normal rule). Since the plugged estimates
are consistent, it is logical to use (5) provided that the sampled pop-
ulations Π1, Π2 are normally distributed. Thus, in this setting the
parameters of the populations are unknown, but their form is known.
Since the knowledge of the type of the distribution is not always
at disposal, the inference on classification is in practice sometimes
based on the EBN rule even if the assumption of the normality is not
fulfilled. Aspects of the use of the EBN rule are investigated in the
next sections by means of simulation results in connection with some
non-parametric procedures.

As the true distribution of Π1, Π2 is not always known (this oc-
curs often when some biological phenomena are observed), methods
constructed without a reference to the type of distribution are often
useful. To this class of nonparametric rules belongs the WR rule,
constructed in Section 2. One of the most known nonparametric
rules is the nearest neighbour rule, which will be referred to as NN.
This rule assigns the observation to the population which has a larger
number of observations amongst the ones that are closest to the clas-
sified vector. More precisely, the experimenter chooses a positive
odd integer K < n1 + n2. Further, let

v(1) ≤ v(2) ≤ . . . ≤ v(n1+n2)

denote the ordering of the numbers {‖Z − Xji‖; j = 1, 2 , i =
1, . . . , nj} according to their magnitude. Put

h(1) = #
{

t ∈ {1, . . . , K}; v(t) = ‖Z − X1i‖ , 1 ≤ i ≤ n1

}

and

h(2) = #
{

t ∈ {1, . . . , K}; v(t) = ‖Z − X2i‖ , 1 ≤ i ≤ n2

}

,

i.e., h(j) denotes the number of observations from the jth popula-
tions amongst the K closest. If h(1) > h(2), then Z is assigned
to Π1, if h(1) < h(2), then it is assigned to Π2. Since the number
K is odd, this procedure has always a unique result (it cannot occur
that h(1) = h(2)). Our experience from simulations shows that for
sample sizes not exceeding several hundred, the choice of K ranging
approximately from 0.05(n1 + n2) to 0.1(n1 + n2) usually yields
good results.

4. Some Simulation Results

The effect of the rules was investigated by means of simulation
estimates always obtained from N = 5000 trials. In the case that
there was only a tiny overlap between the populations, the mentioned
procedures yielded only mildly different results and therefore we fo-
cus on situations with larger probabilities of error. In the following
tables we present several simulation estimates of the probabilities of
the error, each case representing some particular type of the situation,
differing mainly in the behaviour of the tail probabilities of the un-
derlying distributions. The best result for the given distribution and
sample sizes is printed in boldface letters.

Case 1 is a sampling from the normal distribution Π1 =
N3(µ1, Σ1) and Π2 = N3(µ2, Σ2) where µ1 = (9, 8, 10)′, Σ1 =
diag(2.3, 3, 4.2), µ2 = (8, 6, 11)′ and Σ2 = diag(3, 4.2, 2). Case
2 is a sampling from the Cauchy distributions Π1 = C3(µ1, Σ1) and
Π2 = C3(µ2, Σ2) with independent components, location parame-
ters µ1 = (29, 32, 8)′, µ2 = (27.5, 21, 16)′ and the scale parameter
matrices Σ1 = diag(1.3, 2.6, 2.3)1/2, Σ2 = diag(2.9, 3, 1.7)1/2.
Case 3 is a sampling from the distribution of Σε + µ, where
ε has independent components, each having the Pareto density
f(x) = (m − 1)/xm if x ≥ 1 and 0 elsewhere (with m = 1.85),
and the population Πj , j = 1, 2, has the location parameters
µ1 = (29, 32, 4)′, µ2 = (27.5, 7.5, 30.8)′, and the scale param-
eter matrices σ1 = diag(1.1, 2, 2)1/2, σ2 = diag(2.9, 3, 1.5)1/2.
As usual, diag denotes here the diagonal matrix with the given diag-
onal.
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Case 1 n1 = 80 n2 = 60
P (2|1)P (1|2) PTE MPE

EBN 0.186 0.317 0.242 0.317
K

NN 7 0.213 0.341 0.268 0.341
NN 11 0.195 0.335 0.255 0.335

we
WR 1 0.253 0.247 0.250 0.253
WR n2/n 0.168 0.345 0.244 0.345
WR n2/n1 0.219 0.282 0.246 0.282

Case 1 n1 = 160 n2 = 60
P (2|1)P (1|2) PTE MPE

EBN 0.080 0.488 0.191 0.488
K

NN 11 0.076 0.540 0.202 0.540
NN 17 0.062 0.559 0.198 0.559

we
WR 1 0.248 0.245 0.247 0.248
WR n2/n 0.124 0.409 0.202 0.409

n2/n1 0.152 0.364 0.210 0.364

Case 2 n1 = 80 n2 = 60
P (2|1)P (1|2) PTE MPE

EBN 0.308 0.417 0.355 0.417
K

NN 7 0.092 0.118 0.103 0.118
NN 11 0.097 0.110 0.103 0.110

we
WR 1 0.142 0.152 0.146 0.152
WR n2/n 0.099 0.221 0.151 0.221
WR n2/n1 0.121 0.178 0.146 0.178

Case 2 n1 = 160 n2 = 60
P (2|1)P (1|2) PTE MPE

EBN 0.337 0.450 0.377 0.450
K
11 0.054 0.161 0.084 0.161
17 0.066 0.153 0.090 0.153
we

WR 1 0.136 0.172 0.145 0.172
WR n2/n 0.076 0.273 0.130 0.273
WR n2/n1 0.086 0.243 0.129 0.243

Case 3 n1 = 80 n2 = 30
P (2|1)P (1|2) PTE MPE

EBN 0.219 0.371 0.260 0.371
K

NN 7 0.036 0.155 0.068 0.155
NN 9 0.041 0.149 0.070 0.149

we
WR 1 0.113 0.122 0.116 0.122
WR n2/n 0.054 0.230 0.102 0.230
WR n2/n1 0.058 0.203 0.098 0.203

5. Discussion and conclusions

It can be seen from the tables that for unbalanced sampling the
use of the rule which is best from the point of view of PTE may
result in an unacceptably high MPE (the case 1 when MPE equals
0.488), whereas a classification rule with a mildly worse PTE may
yield strikingly better MPE. Thus, while the EBN rule remains the
best choice for normal populations as far as the PTE is concerned, this
rule should not be used either for strongly unbalanced sample sizes
or for populations differing from the Gaussian type; in such cases,
the use of nonparametric competitors can be recommended. If the
normality of the distributions is questionable and one aims to reduce
the PTE, then either the NN method or the WR method (proposed in
the previous text) with a suitably chosen weight can be used. If, how-
ever, the populations are considered to be of equal importance, then,
with the exception of approximately balanced sampling from normal
distributions, the use of the WR method with we=1 is recommendable
because its MPE attains good values under various circumstances. It
should be noted here that distributions not resembling any theoreti-
cal model often occur in practice and then a comparison of the WR
method with various weights and with other mentioned competitors,
based on cross-validation, can be useful.
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