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Motor-driven machines, such as water pumps, air compressors, and fans, are prone to fatigue failures after long operating hours, resulting in 

catastrophic breakdown. The failures are preceded by faults under which the machines continue to function, but with low efficiency. Most 

failures that occur frequently in the motor-driven machines are caused by rolling bearing faults, which could be detected by the noise and 

vibrations during operation. The incipient faults, however, are difficult to identify because of their low signal-to-noise ratio, vulnerability to 

external disturbances, and non-stationarity. The conventional Fourier spectrum is insufficient for analyzing the transient and non-stationary 

signals generated by these faults, and hence a novel approach based on wavelet packet decomposition and support vector machine is proposed 

to distinguish between various types of bearing faults. By using wavelet and statistical methods to extract the features of bearing faults based 

on time-frequency analysis, the proposed fault diagnosis procedure could identify ball bearing faults successfully. 
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1.  INTRODUCTION 

Induction motors are used as actuators in major applications 

at present. A high-quality induction motor would last for 

decades under normal operating conditions. However, the life 

and efficiency of the motor could drop significantly because 

of various factors such as the influence of heat, vibrations, 

load, power variation, and mechanical wear. Deterioration in 

the efficiency of the motor would increase power 

consumption, and could even cause a catastrophic failure. An 

IEEE report [1] has indicated that motor failures could be 

categorized as electrical failure, mechanical failure, 

environmental contamination, etc. The report has also 

indicated that bearing failures are very dominant, and that 

they prevent the identification of other minor failures. When 

a ball bearing fails, it often generates abnormal vibrations and 

noise. Therefore, it is important to monitor the vibrations of 

the equipment to enable detection of bearing failures at an 

early stage. 

The conventional vibration analysis method uses the 

Fourier transform. By converting a time-domain signal into 

its frequency counterpart, the dominant frequencies could be 

clearly observed. Previous studies focused on the 

identification of the characteristic frequency of the fault on 

the Fourier spectrum. However, the vibration signals were 

prone to contamination by the disturbances, and the accuracy 

of  the  diagnosis  mainly depended  on the experience of the  

technician. The misinterpretation of the fault symptom was 

mainly because of the improper representation of nonlinear 

and transient signals by the Fourier transform. To detect the 

features of such signals, time-frequency analysis methods, 

such as short time Fourier transform (STFT), discrete wavelet 

transform (DWT), and wavelet packet decomposition 

(WPD), were considered. The time-frequency plot generated 

by these methods showed a good time resolution at the high 

end of the frequency spectrum, and a good frequency 

resolution at the low end of the frequency spectrum. 

In this study, it was found that the resonant frequency of the 

motor-driven equipment reflects the underlying time-

frequency features to indicate the condition of the ball 

bearing. These features could be extracted by applying 

statistical indexes such as kurtosis, skewness, standard 

deviation, and root mean square to the coefficients of WPD 

within the bandwidth of resonant frequency. The time-

frequency information of the transient impulses generated by 

the bearing fault could be extracted by WPD, and support 

vector machines (SVM) are then used as classifiers to detect 

the condition of the ball bearing based on these features. The 

proposed method does not require the machine spec in 

advance and complex de-noising procedure such as 

enveloping. It could provide precise evaluation of the ball 

bearing condition.  
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2.  LITERATURE REVIEW 

In previous studies, Fourier spectrum has been used as the 

major tool to analyze ball bearing vibrations. The 

characteristic frequencies of the bearing faults could be 

derived from the bearing geometry and rotational speed. 

Different types of bearing faults, such as defects in the inner 

race, outer race, cage, and balls, could be identified based on 

the frequency spectrum obtained from vibration 

measurements [2], [3]. In several studies conducted to date, 

time-frequency analysis methods with machine learning 

algorithms have been applied to identify the bearing faults. 

The power spectrum densities of the fourth and the sixth level 

decompositions using Morlet wavelets have been proved to 

be good indicators of bearing faults [4]. The characteristic 

features of the wavelet packet energy were extracted from the 

WPD, and a radial basis function neural network was 

proposed to identify the patterns of the ball bearing faults [5]. 

The Daubechies 8 wavelet was demonstrated to have better 

diagnostic accuracy than the Symlet 8 wavelet [6]. The 

statistical parameters such as skewness and kurtosis were 

applied to the detail coefficients of DWT to distinguish 

between faulty and healthy bearings [7]. 

Time-frequency methods have often been used as the de-

noising tool to filter external disturbances. WPD was used as 

a bandpass filter to extract the critical components of the 

bearing fault signal, and cepstral analysis was used to separate 

the sidebands of the power spectrum [8]. It was proved that 

the cepstrum and power spectrum of the wavelet packet 

reconstruction could detect the outer ring fault successfully. 

Wavelet transform was used to de-noise the bearing vibration 

signal corrupted by a noisy environment [9]. The energy of 

WPD was then used as an index to represent the bearing 

health condition. It was reported that soft thresholding might 

result in the loss of useful information; therefore, hard 

thresholding was preferred for de-noising. The bearing fault 

signal, which was de-noised by the undecimated discrete 

wavelet transform (UDWT), was decomposed by empirical 

mode decomposition (EMD) into a set of intrinsic mode 

functions (IMFs) [10], [11]. The fast Fourier transform (FFT) 

of the specific IMF could clearly reflect the characteristic 

frequency of the fault. The WPD and Hilbert transform were 

used to extract the modulating signal of the characteristic 

frequency of the bearing fault [12]. In another research, 

sparsogram was used to identify the resonant frequency based 

on WPD and the enveloping method. The experimental 

results indicated that sparsogram was the best bearing 

diagnosis method compared to various other methods such as 

improved kurtogram, the smoothness index based WPT, and 

the Shannon entropy based WPT [13]. 

Machine learning algorithms have often been used as 

classifiers to distinguish faulty conditions from the normal 

condition. The relative spectral entropy and gravity frequency 

of the envelope spectrum were used as the two-dimensional 

vector features for the K-nearest neighbor recognition [11]. 

The envelope analysis based on an energy operator was 

reportedly better than the envelope demodulation of Hilbert 

transform in terms of speed and accuracy. The root mean 

square (RMS) values of the DWT and discrete wavelet packet 

transform (DWPT) were inputted to a Bayesian classifier to 

identify the bearing fault locations [6]. The combination of 

RMS and DWPT was found to achieve the best classification 

accuracy. The statistical indexes such as RMS, crest, and 

kurtosis were applied to continuous wavelet transform to 

generate the features for the SVM and artificial neural 

network (ANN). It was reported that the incipient faults were 

more difficult to diagnose, and that the accuracy of the SVM 

was higher than that of the ANN [14]. Based on WPD and 

five statistical features, a population based stochastic 

optimization technique was used to reduce the number of 

features and obtained high classification accuracy [15]. The 

signal de-noising method and Shannon entropy were applied 

to generate the features of each WPD level. The accuracy of 

the SVM classifier was 92 % [16], [17]. WPD and envelope 

analysis were used to find the frequency band of the bearing 

fault. The result of distance evaluation technique, WPD 

coefficients, and energy were selected as the features for the 

SVM, and the overall classification accuracy was 95 % [18]. 

In another study, wavelet was used as the de-noising method, 

and Weibull negative log-likelihood function was applied as 

the classifier for the time-series feature [19]. Daubechies 5 

wavelet with fifth level decomposition was applied to non-

extensive wavelet feature scale entropy. The locality 

preserving projection (LPP), which is a popular manifold 

learning algorithm, was then used to reduce the high-

dimensional features. Compared with other kernel SVMs, the 

SVM with Morlet wavelet kernel was reportedly the best 

classifier for the diagnosis of bearing faults [20]. 

 

3.  EXPERIMENTAL SETUP 

The experimental setup for the motor-driven equipment is 

shown in Fig.1. The setup consists of a TECO AEHF 3-phase 

induction motor (1 HP, low voltage squirrel cage), a TECO 

A510 series variable frequency drive (VFD), a Chain Tail 

ZKB010AA magnetic particle brake, and a Lorenz Dr-2477-

P torque meter.  

Four Wilcoxon 786A accelerometers with a sampling rate 

of 25,600 Hz were located in the vertical and the horizontal 

directions with respect to the bearing housing, as shown in 

Fig.2. There are two bearings installed in the system to 

support a rotating disk. The defects were only introduced to 

the bearing closest to the motor, and only the measurement of 

accelerometer 1 was taken into consideration because the 

horizontal vibration is most sensitive to the bearing defects 

from our experience. Three bearing conditions, i.e., normal 

condition, outer ring fault, and inner ring fault were 

considered in the experiment. The outer ring and inner ring 

faults were created by making a groove in each ring, with 

0.2 mm depth and 0.2 mm width, as shown in Fig.3. The 

grooves were made by wire electrical discharge machining 

(WEDM). 
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Fig.1.  Setup for the motor-driven rotary system. 

 

 

 
 

Fig.2.  Installation of accelerometers. 

 
 

 
 

Fig.3.  a) Inner ring, b) Outer ring (defect created by wire electrical 

discharge machining). 

 
 

Fig.4.  Dimensions of ball bearing. 

 

 

 
 

Fig.5.  Processing of dataset. 

 

 
Table 1.  Specification of SKF 6204-T1 bearing. 

 

Geometry 

parameter 
Size 

Outer diameter (DO) 
47 mm 

 

Inner diameter (DI) 20 mm 

Pitch diameter (DP) 33.5 mm 

Ball diameter (DB) 8 mm 

Number of balls (NB) 8 

Contact angle (θ) 0° 

 
The speed of the motor could be adjusted by tuning the 

output frequency of the VFD. The VFD frequencies in the 

experiment were set to 45 Hz and 60 Hz, equivalent to motor 

speeds of 1350 rpm and 1800 rpm, respectively. Because the 

characteristic frequencies of motor faults are usually defined 

in the unit of Hz, the unit of rpm is converted to the unit of 

Hz in this study. The recorded data included three-phase 

voltage and current signals, and the signals from the four 

accelerometers, rotary encoder, and torque meter. Once the 

motor speed reached steady state, the data were recorded for 

a span of 20 s in each experiment. The experiments were 

conducted at two speeds: 22.5 Hz and 30 Hz. At each speed, 

the tests covered three different bearing conditions, i.e., 

healthy condition, with inner ring defect, and with outer ring 

defect. Each experiment was repeated three times. The 

parameters of the ball bearing are shown in Fig.4., and the 

dimensions are presented in Table 1. Resistance to rotation 

and eccentricity were the other control variables in the 

experiment. Three different torques, i.e., 0.3 Nm, 1.5 Nm, 

and 3 Nm, and three eccentricity conditions, i.e., normal, 

angular eccentricity, and parallel eccentricity, were applied. 

The eccentricities were introduced between the motor and the 
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closest bearing housing by adjusting their relative positions, 

and the amounts of eccentricities were measured by using a 

laser alignment system (FixturLaser P-0272-GB). In the 

experiment, the parallel and angular eccentricities were 

intentionally made to 0.3 mm and 0.25/100 (0.25 mm 

deviation per 100 mm length), respectively, which greatly 

exceed the normal values. However, the influence of the 

eccentricities to the vibration measurement is not obvious, so 

we did not regard the eccentricities as effective failure modes. 

From the bearing specifications presented in Table 1., the 

characteristic frequencies of the bearing faults were 

calculated using (1)-(4); the frequencies are presented in 

Table 2. 
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To increase the number of data sets, the time span of 20 s 

for the data of each experiment was divided into six segments, 

as shown in Fig.5. Thus, the time span of each segment was 

3 s. As each experiment was repeated three times, there were 

18 data sets for each condition. As a result, the total number 

of data sets in Table 2. is 54.  

 
Table 2.  Parameters for the experiment. 

 

No. VFD (Hz) 
Rotation 

speed (Hz) 

Resistance 

A (0.3 Nm) 

B (1.5 Nm) 

C (3.0 Nm) 

Bearing failure 

mode 

Bearing 

characteristic 

frequency (Hz) 

Eccentricity 

1 45 22.5 A Inner ring fault 111.2 Angular eccentricity 

2 45 22.5 B Outer ring fault 68.7 Normal 

3 45 22.5 C Normal N/A Parallel eccentricity 

4 60 30 A Outer ring fault 91.7 Parallel eccentricity 

5 60 30 B Normal N/A Angular eccentricity 

6 60 30 C Inner ring fault 148.3 Normal 

 

 

Frequency sweeping was conducted before the start of the 

experiment. This was an important step in the investigation 

of the resonant frequencies of the motor-driven equipment. 

The waterfall plots for the normal condition, inner ring fault, 

and outer ring fault are shown in Fig.6. Two types of 

resonance phenomena were observed: static and dynamic. 

The static resonant frequency remained unchanged when the 

rotation speed was varied. On the contrary, the dynamic 

resonant frequency was proportional to the rotation speed. 

The waterfall plot for the normal condition is shown in 

Fig.6.a); it shows five groups of static resonant frequencies, 

0-1500 Hz, 2500-3500 Hz, 3500-4500 Hz, 7000-8000 Hz, 

and 10000-12000 Hz. In addition, a few dynamic resonant 

frequencies could be observed between 0 to 3000 Hz. The 

waterfall plots for the inner and outer ring fault conditions are 

shown in Fig.6.b) and Fig.6.c), respectively. It can be seen 

from the figures that multiple frequencies are triggered, 

especially around the static resonant frequency of 3000 Hz, 

because of the impact between the ball and the defect on the 

ring. However, the difference between the Fourier spectra of 

the inner and outer ring faults was not significant. 

 

4.  ANALYSIS METHOD 

The conventional Fourier analysis adopts sinusoidal basis 

functions to convert the time-domain signal into its frequency 

counterpart.  These  sinusoidal basis functions,  however, are  

global functions, and hence the methods based on Fourier 
spectrum cannot reflect the genuine characteristics of a 
transient, non-stationary signal. On the other hand, 
continuous wavelet transform can be used in time-frequency 
analysis by dilating and translating the local basis, called 
mother wavelet. It has a good frequency resolution at the low 
end of the frequency spectrum and a good time resolution at 
the high end of the frequency spectrum. The discrete form of 
the continuous wavelet transform can be represented as 
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where j,k,n ∈ Z. The DWT could be realized by feeding the 
time-domain signal into a series of high pass and low pass 
filter pairs. The approximation coefficients and detail 
coefficients are generated when the time-domain signal is 
convoluted with low pass filter and high pass filter, 
respectively. As the DWT applies high pass and low pass 
filter pairs only to the approximation coefficients, it has 
limited bandwidth especially at the high frequency spectrum. 
However, the WPD shown in Fig.7. applies the filter pairs to 
both approximation and detail coefficients. Hence it has 
better frequency resolution at the high frequency spectrum 
than the DWT. The WPD coefficients at each level are 
defined by the following equations. 
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where ����

��  denotes the j-th decomposed level of the wavelet 

packet coefficients in the frequency band of  2
�0 < 
 <

2� − 1�. The terms ℎ�−2��  and ��−2��  are the low-pass 

and high-pass filters, respectively, based on the selected 

mother wavelet function.  

 

 
a) 

 

 
b) 

 

 
c) 

 
Fig.6.  Waterfall plot of resonant frequencies under a) normal 

condition, b) inner ring fault, c) outer ring fault. 

 

 

 
 

Fig.7.  Three-layer wavelet packet decomposition (WPD). 

 
 

Fig.8.  Hyperplane of support vector machine. 

 

Statistical indexes such as kurtosis, skewness, standard 

deviation, root mean square, and maximum value were 

extracted from the wavelet packet coefficients. These 

statistical indexes are defined by the following equations. 
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where x  is the average of the data and n is the sample size. 

SVM was used as the classifier to detect the ball bearing 

condition. In this algorithm, the data were plotted in a multi-

dimensional space with the coordinates defined by the values 

of their features. The operation of the SVM algorithm relies 

on finding the hyperplane that gives the largest minimum 

distance to the training examples. The minimum distance is 

called margin in SVM terminology. Therefore, the optimal 

separation hyperplane is the one that maximizes the margin 

of the training data, as shown in Fig.8. The equation for the 

hyperplane can be defined as  

 

( ) T
0β β+x xf =                              (13) 

 

where β is the weight vector and β0 is the bias. The optimal 

hyperplane can be represented in an infinite number of 
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different ways by scaling β and β0. As a matter of convention, 

among all the possible representations of the hyperplane, the 

one chosen is 

 
T

0 1β β+ =x                               (14) 

 

where x refers to the training examples closest to the 

hyperplane. In general, the training examples that are closest 

 to the hyperplane are called support vectors. The hyperplane 

that meets the condition mentioned above is known as the 

canonical hyperplane. The distance D between a point x and 

the hyperplane (β, β0) is calculated using the following 

equation. 
 

T
0+β β

β
=

x
D                               (15) 

 

 

 

 

 
 

 
Fig.9.  Flowchart of the diagnosis scheme. 
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In particular, for the canonical hyperplane, the numerator is 

equal to one and the distance to the support vectors is given 

by 

 
T

0

support vectordistance
β β

β

+
=

x
                 (16) 

 

The maximum margin introduced in Fig.8., denoted here as 

M, is twice the distance to the closest training examples 

 

2

β
=M                               (17) 

 

Finally, the problem of maximizing M is equivalent to the 

problem of minimizing a function L(β) subject to some 

constraints. The requirements for the hyperplane are decided 

based on the constraints to classify all the training examples 

xi correctly.  
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where yi represents the labels of the training examples. 

The analysis procedure proposed in this research consists of 

four stages: data collection, data pre-processing, feature 

extraction, and model prediction. The details are shown in 

Fig.9. At the data collection stage, both frequency sweeping 

and the experiments as per the details presented in Table 2. 

were conducted. Then, waterfall plots were developed at the 

data pre-processing stage to confirm the resonant frequency, 

while Fourier spectrum was used to detect the characteristic 

frequencies of the bearing faults. WPD was then applied to 

analyze the vibration signals. At the feature extraction stage, 

five statistical indexes were applied to the coefficients of 

WPD that are related to the main resonant bandwidth. Finally, 

the SVM was constructed at the model prediction stage. 

 

5.  EXPERIMENTAL RESULTS AND DISCUSSION 

The time-domain response, frequency spectrum, and the 

WPD of the vibration signals acquired from accelerometer 1 

in each condition are shown in Fig.10., Fig.11., and Fig.13. 

The sixth level decomposition with db20 as the mother 

wavelet was chosen empirically for the WPD, and the rotating 

speed was set to fs = 22.5 Hz. The frequency spectrum of the 

vibrations in the case of a healthy bearing, shown in Fig.10.b), 

indicates that  there  are  two groups  of frequencies around 

0-1000 Hz and 4000 Hz. The plot of WPD shown in Fig.10.c) 

also indicates the same result. The frequencies around 

3000 Hz were not significant.  

When the bearing with the inner ring defect was tested, 

periodic shockwaves caused by the collision of the balls and 

the defect were detected on the time-domain response, as 

shown in Fig.11.a). The periods (and frequencies) of the 

shockwaves were 0.0096 s (104 Hz) and 0.046 s (21.5 Hz). 

These frequencies matched the ball pass frequencies of the 

inner ring fault (BPFI) and the rotation speed (fs). Because of 

the resisting torque applied in the experimental setup, the 

actual rotation speed was slower than the theoretical value. 

The long period of the shockwave was because of the 

clearance between the balls and the inner ring, which makes 

the collision between them occur once per cycle, as shown in 

Fig.12.a).  

 

 
 

Fig.10.  a) Time-domain response, b) FFT, c) WPD of healthy 

bearing with fs = 22.5 Hz. 

 

 
 

Fig.11.  a) Time-domain response, b) FFT, c) WPD of inner ring 

fault with fs = 22. Hz. 

 

 
 

Fig.12.  Relationship between defect and gap:  

a) Inner ring fault, b) Outer ring fault. 
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Both the Fourier spectrum and WPD plot, shown in 

Fig.11.b) and Fig.11.c), respectively, indicate that the 

resonant frequencies were triggered around 3000 Hz. 

Likewise, when the bearing with the outer ring defect was 

tested, periodic shockwaves caused by the collision of the 

balls and defect were detected, as shown in Fig.13.a). In the 

case of the outer ring defect, there was no clearance between 

the ball and the defect, as shown in Fig.12.b), because the 

gravity forced them to remain in close contact. There was 

only one period of 0.01461 s (68.5 Hz) for the shockwaves, 

equivalent to the ball pass frequency of the outer ring fault 

(BPFO). Both the Fourier spectrum and WPD plot were 

similar to those in Fig.11., and the resonant frequency of 

3000 Hz could be observed in both Fig.13.b) and Fig.13.c). 

From Fig.13., it can be concluded that the characteristics of 

the transient and non-stationary shockwaves could not be 

identified using the Fourier spectrum, but their pattern could 

be reflected by the WPD. The resonant frequencies were 

observed around 3000 Hz in the spectrum of the 50th node in 

the sixth level wavelet packet decomposition. Hence, the 

statistical indexes such as kurtosis, skewness, standard 

deviation, root mean square value, and maximum value were 

applied to the WPD coefficients for the 50th node for 

generating the features to be inputted to the SVM.  

As mentioned previously, the data were recorded with a 

time span of 20 s, and were divided into six segments for each 

experiment. Each experiment was repeated three times. The 

statistical indexes for the three rounds of experiments with 

fs = 22.5 Hz are shown in Fig.14. The normal and faulty 

conditions could be clearly distinguished by most of the 

indexes, except kurtosis and skewness, as shown in Fig.14.a) 

and Fig.14.b). It was not possible to distinguish clearly 

between the inner ring fault and the outer ring fault using 

these two indexes. In general, the values of the inner ring fault 

indexes, however, were larger than those of the outer ring 

fault indexes. Data from any two rounds were used as the 

training data sets for the SVM, and the data from the 

remaining round were used as the testing data set; thus, there 

would be three sets of accuracies after interchanging the 

rounds.  
 

 
 

Fig.13.  a) Time-domain response, b) FFT, c) WPD of outer ring 

fault with fs = 22.5 Hz. 

 
a) 

 

 
b) 

 

 
c) 

 

 
d) 

 

 
e) 

 
Fig.14.  a) Kurtosis , b) skewness, c) standard deviation, d)root mean 

square, and e)maximum value for each round (fs = 22.5 Hz).  
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An overall accuracy of 97.9 % was obtained from the 

calculations, as presented in Table 3. Similarly, the features 

in the three rounds corresponding to fs = 30 Hz also obtain an 

overall accuracy of 98.3 %, as presented in Table 4.  

 
Table 3.  Classification accuracy of SVM (fs = 22.5 Hz). 

 

Training data Testing data Accuracy 

1st round 

2nd round 
3rd round 98.2 % 

1st round 

3rd round 
2nd round 99.0 % 

2nd round 

3rd round 
1st round 96.5 % 

Overall accuracy = 97.9 % 

 

 
Table 4.  Classification accuracy of SVM (fs = 30 Hz). 

 

Training data Testing data Accuracy 

1st round 

2nd round 
3rd round 98.5 % 

1st round 

3rd round 
2nd round 99.2 % 

2nd round 

3rd round 
1st round 97.3 % 

Overall Accuracy = 98.3 % 

 

6.  CONCLUSIONS 

A generic fault diagnosis procedure was proposed in this 

research for detecting the ball bearing faults in motor-driven 

equipment. The experiments were conducted on bearings in 

normal condition, with inner ring defect, and with outer ring 

defect, under various resistance levels and rotational speeds. 

Before the experiments were conducted, waterfall plots were 

developed to identify the static and dynamic resonances. 

Periodic shockwaves were observed in the time domain when 

the bearings with inner ring or outer ring defect were tested. 

Although the characteristic frequency of the fault could be 

predicted based on the bearing specification, the frequency 

was not significant on the Fourier spectrum, because the 

conventional Fourier spectrum is insufficient for analyzing 

the transient and non-stationary shockwaves. Hence, wavelet 

packet decomposition was applied, and it was found that the 

distinct time-frequency features could be extracted from the 

coefficients at the resonant frequency. Five statistical 

indexes, i.e., kurtosis, skewness, standard deviation, root 

mean square, and maximum value, were applied to the 

coefficients of the wavelet packet decomposition for 

generating the inputs to the support vector machine to classify 

the failure modes. Because only the information of resonant 

frequencies is required to conduct the analysis, the proposed 

method could be applied to multiple types of induction 

motors with different rotation speeds. It was proved to be 

effective and accurate for identifying the ball bearing 

condition. The same procedure that adopts time-frequency 

information to diagnose the abnormality could be applied to 

other rotary machines as well. 
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