MEASUREMENT SCIENCE REVIEWLS, (2018), No. 6, 227-235

§ sciendo é“‘SPXJO@
Z
MEASUREMENT SCIENCE REVIEW Eu—mg
ISSN 1335-8871 Journal homepage: http://www.degruyter.com/view/j/msr %&1\/] i 30§

Confidence Region for Calibration Function Coefficients

Petra Rabbov& and Gejza Wimmer®

IFaculty of Science, Masaryk University, Kotlafska 2, 67183no, Czech Republi®24037@mail.muni.cz
2Faculty of Science, Matej Bel University, Tajovského 4@,07 Banska Bystrica, Slovak Republigmmer@mat.savba.sk
SMathematical Institute, Slovak Academy of Sciences, i8keféa 49, 814 73, Bratislava, Slovak Republic

The paper deals with the comparative calibration model, i.e. with a situatiem Wwhth variables are subject to errors. The calibration
function is supposed to be a polynomial. From the statistical point of viewntigel after linearization could be represented by the linear
errors-in-variables (EIV) model. There are two different ways3ifig the Kenward and Roger’s type approximation to obtain the confidence
region for calibration function coefficients. These two confidence regime compared on a small simulation study. Calibration process and
process of measuring with calibrated device are described undersilvptson that the measuring errors are normally distributed.
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1. INTRODUCTION measurements ah different objects (substances, quantities

Calibration is a very important part of metrology. Accord-Of interestVi, Vz, ..., Vim realized by two different measuring
ing to [1] calibration is an operation that, under specifiedlevicesZ and?’, respectively. The accuracy of both mea-
conditions, in a first step, establishes a relation betwhen tsuring devices?” and#’ is unknown, but it is supposed that
quantity values with measurement uncertainties proviged he squared standard uncertainiigsand o are unchanged
measurement standards and corresponding indications wiiit need not be equal) in the whole range of measurements.
associated measurement uncertainties and, in a second siépey are estimated using the MINQUE estimators. The mea-
uses this information to establish a relation for obtaining surements are supposed to be normally distributed and the
measurement result from an indication. Calibration may bgalibration function is a polynomial of degrée

expressed by a statement, calibration function, calibmadi- The calibration process consists of two parts: (i) creation
agram, calibration curve, or calibration tablemeans that, and evaluation of the calibration model, and (ii) measuring
if we have a measuring device and a measurement Standd{\dt’h the calibrated device. In the contribution, we are m@l
calibration (process) establishes a relation betweenuha- With creation of the calibration model under some speciftc bu
tity values provided by the measurement standard and CO”!@B' conditions. In fact, our contribution is about estiimat
sponding values indicated on the (calibrated) measuring def the calibration function parameters including the peobl
vice. Of course, if we measure a quantity by the standard, v determinating the confidence region for these parameters
obtain 0n|y the evidence value (es“ma@f the true quan- It turns out that there exist two ways of determinating the de
tity value v (expressed in units of the standard). In the samgired confidence region using Kenward and Roger’s approxi-
way, if we measure the same quantity by the (calibrated) megation. Using simulations, we compare the behavior of these
suring device, we obtain only the evidence value (estimate)two confidence regions. It turns out that in the considered
of the true quantity valug: (expressed in units of the (cal- situations the statistical performance of both confideree r
ibrated) measuring device). The indications (evidence va@ions is practically the same. Finally, we derive the praced
ues) can be obtained in the same or different units. In th#®r measuring with the calibrated device. Given the recdrde
paper, the theoretical calibration function= f(“), is un- valuex, which is an estimate of the true unknown Value
derstood as a function which expresses the relation betweghthe measured object (in units of the less precise measurin
the ideal (true, errorless) values of the same object medsurdevice Z"), we determine thél — o) confidence interval for

by the calibrated measuring device and the standard, respég - the true (unknown) errorless value of the same measured
tively. More precisely, we consider the problem of calibrat object (in units of the more precise measuring devce

ing the less precise measuring devigeby the more precise  In this paper, we describe the model of comparative cali-
measuring device?. The paper derives the confidence rebration with polynomial calibration function. We deriveeth

gion for calibration function coefficients based on repeatebest linear unbiased estimators (BLUEs) which are the opti-
mal estimators of the model parameters, and moreover, we
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also derive the approximatel — a) confidence region for and
the unknown parameters, as well as for any linear function

of the parameters under assumption of normally distributed Vi V1

measurements. Y2i 12 - V2
In Section 2 we describe the polynomial calibration model ' : ’ P ;

and derive the BLUESs of the model parameters. In Section 3 o Vim

are derived methods for estimation of the unknown variances
(squared uncertainties) of the measurement error. Ingoarti The model of calibration i$X’1,Y’l,...,X§1,Y§1)’ ~
lar, we consider the minimum norm quadratic unbiased esti-
mator (MINQUE). In Section 4 we present detailed descrip- N1 o u | o2lm O
tion of the iterative procedure for estimating the model pa- (In@ l2m) » In® 0  0oZlm
rameters. In Section 5 and Section 6 are described two types
of construction of the confidence region for the calibratiof® means the Kronecker product) with the nonlinear
function parameters based on the Kenward and Rogger’s gg@nstraints on parameters, = aglm + a1l + -+ + ay U,
proximation. In Section 7, these two approaches are corthere 1 is the mx 1 vector (1,1,...,1), and pP® =
pared based on using the empirical coverage probabilities muf,...,ug)/. Using the Taylor expansion in proper values
Monte Carlo simu_lations. S_ection 8 de_scribes thg method @f, = (200,810,820, - - - , ko)’ andug - (uﬂ)’ e ,Jrk;o)” and ne-
measurements with the calibrated device. The final conclygiecting the terms of the second and higher order, and also
sions and discussion is presented in Section 9. putting S = i — pio, i = 1,2,...,m, &, = (dpy, ..., Spm)’,
we obtain the linear regression model with (linear) cornstsa
2. THE CALIBRATION MODEL AND BLUES OF PARAME  On parameters (see e.c],[[3], [4]),
TERS i I l 1 I \/

We assume that we have different objects (substances, § = (X1=Ho, Y1, Xn — Ho. Yn) ~
guantities of interestys,Vs,...,Vin. Each of these objects o2 0
is measured with two different measuring devices (device N [(1n®|2m)< H ),In®( Xom 2| ﬂ, Q)
2 and?/, respectively) and we repeat the measurements Gylm
times. It is assumed that values measured on both devices _ 1 Oy
are realizations of independent normally distributed cand (dlag(alolm+~~-+ka<0uo ) ’_|m> ( v ) +
variables.

We shall use the following notation¥ j is the j-th mea- (1m7u0,...,u('§) a=0 (2)
surement of objedt; with the device2” andX; j ~ N(i, 62),
i=1,2,...,m j=12...,n where the mean value of ; is  (diag(aiolm+---+ kaouf ) is the diagonal matrix with el-
L — the true errorless value of the objagtin units of the ements of the vecto(ra101m+ e +kakou5’l) on the diago-
measuring device?” ando? is the dispersion ok ;. Anal- nal anda= (ag,ay, ...,a)").

ogously,Y; j is the j-th measurement of obje& with the If we denote
deviceZ andY;j ~ N(vi,02),i =1,2,...,m j=12,...,n, B= (3.,
where the mean value ofj is v; — the true errorless value
of the object in units of the measuring devicg andaf is S= diag(a101m+ et ka@u'g*l) ,
the dispersion of; ;.
As mentioned above, from the statistical point of view the B1=(S,—I), By= (1m,u0,...,u'(‘,) ,

calibration function expresses the ideal (true, erroyleslsies

of the measurand (the measured object, substance, or quan- | o < o2lm O ) cl_
tity) in units of the measuring instrumef (here the more " 0 0Zlm )

precise measuring instrument, the standard) as a function o

the true values of the measurand in units of the measuringin- A1 = A1 (07, 07) = BiC 'B) =
strument2” (here the less precise instrument, the calibrated ,
device). In other words, the calibration function expresse _ 1/([nh n

the relationship between the ideal (true, errorless) wabfe X= n (_lei’“'yzlxmsi) )
measuring the same object (substance, quantity) by two mea- = =

o2lm 0O
0 aflm '

(07SS+07l)

Sl Sk

suring instruments?” and %/, respectively. In our case, we _ 1 (n n !

assume that the calibration function is a polynomial of degr Y = n .Zin,n ey ZiYm,i )

K i.e.v=ag+aip+app?+ -+ ap. = =

Let us denote then conditionsZ) are
o H1 o) o)
Xai - W - : -
X — .,| =120 - (S, |)< v >+Bza 0, OI’Bl( v )+Bza 0 (3

Xmi Han
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and according toZ], [3], and F], the BLUE (best linear un- 4.

biased estimator) of vect¢f’, &)’ is

ﬁ pr—
a
and the covariance matrix afis

_Q22a
Qu1

( B;C !B, B, )‘1_ < Q12 )
B, 0 -\ Qa Qx J°

After a short calculation we finally have (see e.§]) [

lom—C~1B1Q11B1
—Q21B:

X — Ho
Y

)75

cov(a)

where

o 07
B=X-"XSQu(S(X~po) ~Y). @
2
V=Y+-2LQu(S(X~pg) —Y), (5)
a=(d,..., &) —_Q21Bl( X Vﬂo ) (6)
and L
cov(d) = —Qz= (B4A;'B2) . (7)
We only note that
X—pu o) _
(o )((3)e)

3. MINQUE ESTIMATORS OF0Z AND 07

According to B, [5], and [6], it can be shown that the
MINQUE (minimum norm quadratic unbiased estimator) of
the variance components’ and of (locally at some appro-
priate valuewg, o) is

Oy
where
[ #3060 -X) (X -R) (X )]
L [0 (=) (v =V +n(7-9) (7-9)] )

SMLzoM )+ =

™+ Bt (SQuSSQuS)
L

(n-m 1 r(Q11Q11)

vy
%0

L tr(Q11SSQu)
(Q11SSQ11) '

=2

0, .
X )IS
Oy

The covariance matrix o( pe

ITERATIVE PROCEDURE FOR ESTIMATING PARAME
TERS

To estimate the desired parameters of the calibrationifumct
we apply results described in Section 2 and 3.

1. We compute the initial (appropriate) values of parame-
terso¢ anday as (realizations of the following random
variables)

m n n 2
%= 3, (m - i;x) ,
m n n 2

then we compute the initial valugg, as (realization of
the random vector)

Ho=X
and the vectoag as (realization of the random vector)

20 = (B5B2) 'BSY.

2. As in Section 2, we obtain the estimat@randv from
(4) and 6), the estimatoa from (6), where

-1

= (BiC'B}) M- (B1C1By) B

Qu
(B3 (B:C™B}) 'B2) By (BiCtBY)

_ _ -1
Qi2= (B1C7'By) "Bz (By(B:C'BY) 'Bz)

Q21 = Ql».

3. We put the realization d (i.e. the estimate) as the ini-
tial value ag = (ago, a1, ...,ax) and calculate the es-
timatorsG¢, G by the procedure described in Section
3. Thus, we obtain the (approximate) BLUE pfv,a
together with the covariance matrix c@).

4. We put the realizations ai?, G (the estimates) as the

valuesaxzO andaxzo, respectively, subsequently we put the
realization offi (i.e. the estimate) as the initial valyg
and return to step 2. We have refined the estimates.

We continue with this iteration process (steps 2, 3, and 4)

till the subsequent estimates are sufficiently accurate: Ac
cording to our opinion 4-7 iteration steps are needed.

The MATLAB codes created for this iterative procedure

are available on the webslte

W (0% 030) = 2y zom ) -

©)
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5. TYPE 1 CONFIDENCE REGION FOR THE CALIBRATION
FUNCTION PARAMETERS

For the final estimator af, obtained in 6), it holds
a~N(a(BA'By) ).

In notation of Appendix 1 we have

_ 2 2\ _ (p/a-1p.\"1
X=1, V(ox,0y)=(BA1B2) ",
2 2 2 2 =2 2 =2 2
01 =0y, 0;=0y, 07=0y, 0;=0yp

(05 andogg, are from Section 4, point 4). So,

@p, = —%B’zAzl (050, 930) S°A1 ™ (050, 030) B,

1
Wp, = _HBIZAIZ (0%, 0%) B2

Similarly,

1 B
Duy, = ﬁB’ZAfSZAIlBZ (BLATBy) 'BLA[ISPALIB,,

1 _ _ _ -1 _
<1>U172:QB’2A1182A1182( 5A1'B)  BLA By,

<1)U2,1 — (l)U/LZ’

My, — rleBIZAIZBZ (BbA;'B2) “BHA, 2By,
(1)R1’1:$ [ LATIS AL B, (BYAT1B,) LBLALISPA 1B,
—B’zAilszAjlszAile] ,

(1)R1,2 _ n712 {B/zAIZBZ (B/zAIlBZ)A B/ZAI152AI1|32_

—BLA[2SPA 1B, — BLAISPA 2B+

+ ByATISPAL 1By (BHAT'By) ByAI By,

2

MRy = )

In the notation of Appendix 1 we have

®(02,02) = (ByAT'B) "

and R
Vp = (05, 0%) +

_ _ -1 _ _
[ bA; 2B, (BLA; 1B2) ’2A1282—B’2A13B4.

+20 (05, 03) {i _il{w}i.i( My -
i=1j=

1
— WPd(0,00) VP — mRiJ)}q’ (0%.0%), (10)

where {W}; is the (i,j)-th element of the matrix
W (0%, 0%) given in @).

According to Appendix 1 we compute)A;, DA, (g,
B, Mgy, Wey, Weg, Wp, Wy, and WA, The(1—a)
confidence region for vecterusing the Kenward and Roger’s
method is

~ ~—1
= s @ P <

k+1

o (11)

Fes (1) .

whereF,,; 1) ,(1—a) is the(1— a) quantile of the Fisher-

SnedecoF distribution withk+ 1 and (Yu degrees of free-
dom.

If inferences are made about a linear combinati@nof
the elements o0&, then again according to Appendix 1 we
calculate VYA, VB, (Mg, (g, (Wgy (1) (LD,
and DA,

The (1- a) confidence region fof'a using the Kenward
and Roger’s method is

~ -1
10, g ={Ia: (D) (1a-1a) (1 V1) ~(1a-I'a) <

Froag(-a)}.

A special case is determination of tiie— a) confidence
interval for the valueag + agpix + apu? + - - - + ax ¥ for a
known valueply. In that case i$ = Iy = (1, ty,. .., uX)’ and
according to 12)

(12)

—~ -1
p((|;a_|;a)2(|;<1)¢Alx) <

1
Ty o= 0’>) : (13)
ie.
'a |;(< )a\)AIX 12
Pl la—tiy,(1—a/2) D) <la<
o I, WDl
|§<a+t<|‘1)u(1—a/2) W) —1-a, (14)

wheret; 1, (1— %) is the(1— ) quantile of Studertt distri-

bution with(""Y'u degrees of freedom.
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6. TYPE 2 CONFIDENCE REGION FOR THE CALIBRATION
FUNCTION PARAMETERS

Let us consider the random vector

—Bl( X—Vﬂo )
>Bza

(from condition @)) and the covariance matrix o9) is

n=-S(X—Hp)+Y = (15)

The mean value oflf) is

Ou

£(m) = ~S(u o) +1v = (%

B 1
=B1C !B} = A1(02,07) = (axzss+ay2|).

cov(n)
So, for the random vectar holds
n ~N(Bza,A1).

In the notation of Appendix 1, in this section we have

2

X =By, V(O’X,O'y) A1,
2 2 2 2 =2 2 =2 2
0y =0y, 0;=0y, 01=0y, 0;=0y,

(05 and o, are from Section 4, point 4). The REML (re-

stricted maximum likelihood) estimator efis the general-
ized least squares estimator

a=(of,03)ByA1 ' (07.05)n

with
-1

®(0f,03) = (ByAL (07, 03)B2)

The (1— a) confidence region for vectarusing the Ken-
ward and Roger’s method is now

@4 o= {a: (@-a) @, (@-a) <

k+1
o R @ull- a)} (17)
If inferences are made about the linear combinatiarof
the elements o&, then again according to Appendix 1 we
calculate 2A, (2B, (12)¢,, (12, (12)cg (12)p  (L2)y,
and (19,
The (1— a) confidence region fola using the Kenward
and Roger’s method is now

—~ -1
12 _q) = {la (1.2} ('a—1a) (|’<2>¢A|) ("a—l'a) <

Frozu(l- a)}. (18)

So for the valueso + aypt + axp® + - + auk = Ij,a (I =

(L, u,...,u"") for a known valueu is
I, @Dal,
P(la—tuy,(1-a/2) ““Tgl’“ag
R I, @Dyl
ha+tia,1-a/2\ 2t | =1-a. (19)

The process of determinating the parameters of the calibra-
tion function (the parameter estimation) together withedet

The adjusted estimator for small sample covariance matrix eninating the confidence region for the parameters (and also

arecommended by Kenward and Rogéfif

o= (05, 0%) +

2
+2q) Uxo,a-yo { Z W}I] UI]
=1

1

- @P(0h,0%) 2P~ § ORiy) [ @(0h.0f). (16)

where
2 P, =

Dp,, @p,= Up,,
1
@y, = ﬁB’ZAflszAflszAIle,
1
@Uy, = ?B’ZAfSZAIZBZ,
<2)U2,1 _ (Z)Ull-,Z’
@) 1,3
Upp = QBZAl Bo,

(Z)Rl,l _ (Z)Rl,z — (2)R2’1 _ (Z)RZ’2 —0.

According to Appendix 1 (analogously as in Section 5) we

compute @Ay, @Ay, Qg @B, @¢, @c, @c; @p,
@y, and @A.

the confidence region for the whole calibration function) is
described asalibrating the measuring device

7. COMPARISON OFTYPE 1 AND TYPE 2 CONFIDENCE
REGIONS USING SIMULATIONS

There are two different possibilities to construct the (agp
mative)(1— o) confidence region for the calibration function
parametersyg,ay, ..., ak, hamely (1) (derived in Section 5)
and (L7) (derived in Section 6). To compare their statistical
performances, we carried out a (small) simulation study.

For various parameter sets of the calibration functiony{ol
nomial of degree 2, 3, and 4), we realized 10000 repeated
measurements of the calibration function and investigtited
percentage of the empirical coverage of the true parameters
by the (1— a) confidence regionl(l) (labeled KR1) and by
the (1 — a) confidence regionl(7) (labeled KR2). Hereqa
was in all cases 0.05. Sample results are recorded in Ap-
pendix 2. Other simulation results can be found on the web-
site?. From the presented simulations it is evident that the
performance of both confidence regiodg)(and (L7) is prac-
tically the same.

2http:/Aww.math.muni.cz/xsirucko/programy/simulations.pdf

231


http://www.math.muni.cz/~xsirucko/programy/simulations.pdf

MEASUREMENT SCIENCE REVIEWLS, (2018), No. 6, 227-235

8. MEASUREMENTS WITH THE CALIBRATED DEVICE

Let us assume that by the measuring devicgthe less pre-
cise measuring device, the calibrated measuring device) we P{é0+éld_|_ 8 d —ty(1—a/2) x
have recorded an errorless value We want to determine

the (approximatej1—a) confidel?ce interval for the value
Vy = ag+ at + apu? + -+ auk, i.e. the(1— a) confi- 1 L
dgnce interval for the errorless recorded \galue measured by \/(lyi))\ (1dd?... d)Oda1d ... do'<
the measuring devic® (the more precise measuring device, v — 2, k<
the standard) using the Kenward and Roger’s method. SVu =80t apt e AH S

In that case, = (1,1, 142, .., u¥)" and the desiredl — a) <&+ah+-- +ah +ty(1—a/2)x
confidence interval is given by 4) or by (19). If we compute
this confidence interval for allt in a given interval(y, d), \/_1(1 hi2... h) OPa(Lh ... hky
we obtain a confidence region along the estimated calibratio (DA

function@ + a1 + - - - + auX in the given intervaly, 8).
Now, let us determine the confidence interval fgr =

ap+aild+apu’+---+auk when (errorless, true) valyeis  In our case, the indeixcan be equal to 1 or 2.

measured by the measuring devigg, but the realization of

the measurement (the registered value, evidence value) isg  concLUSIONS

It means we have realized the measurementN(u,a?). It

is well known that ifX ~ N(u, 02) andS? is an estimator of

o? for which it holdsaﬂxzs2 ~ X2 (x2 is x? distribution with

>1l-a-y.

We derived the comparative calibration model where the cali
bration function is a (complete) polynomial of a given degre
This model is an errors-in-variables model and after lizear

w degrees of freedom), whil¢ andS” are independent, then tion could be represented as a linear regression model with

the following holds true linear constraints on parameters. The optimal linear estim
X tors (BLUES) of the unknown calibration function paramster
—u . . .
5 tw- are shown. The (approximaté&) — a) confidence region for

the whole unknown parameter vector and also for any linear

; ; o\ _ 20} function of the parameters is derived using results obthine
ltmeans that the (;I;pﬂSth%(S )= - andthe degrees of by Kenward and Rogef7]. This derivation was done in two

freedom arew = 7oy If we substituteS” by the MINQUE  ways, and simulations indicate that the performance of both
estimatorg?, then the degrees of freedom are given approxiways is practically the same. Further deeper investigasion

mately as needed to explain this fact, which is beyond the scope of this
' 25} paper. The whole contribution is based on the assumption
W= 75—, of normally distributed measuring errors. Further redeanc
{W(Ufoﬁyzo)}L1 the issues continues in considering also type B uncentsinti

o ) of measurements.
whereW (a5, 035) is given in @).
The(1- y) confidence interval for is

(X— Outw(1—y/2),x+ Outw(1—-y/2)), APPENDIX 1 — SMALL SAMPLE INFERENCE FOR FIXED
EFFECTS
ie. Let us derive the confidence region for the whole paranseter

N N ) and also for an arbitrary linear combinatia by using the
PIX=0dw(1-y/2) <p<X+0tw(1-V/2)} =1=V.  method suggested by Kenward and Rogr [

Consider the general Gaussian linear modekfobserva-

dtionsés_l,

Our main aim is to find the confidence interval fgr = ap +
ai i +apl+ - - - +a X (the errorless (true) value measure

on the standard) if the reading on the calibrated measuring £ ~N(Xav),

device isx. Let us denote whereX is sx (k4 1) matrix with rankk+1, V is a known
covariance matrixa is a (k+ 1)-dimensional vector of un-

d= argmin {80+a15+85++&S},  known parameters, and the elements of the covariance matrix

S€ (x=Oxtu(1=Y/2) X+ Gt(1-¥/2)) V (02, 02) are assumed to be functions of two parametgs

andoj. We assume that the first two partial derivativg$,
h= argmax {Bot+ais+&S +-- +&SY, Y (1 2) exist.
S (x—Oxtw(1—y/2) X+ Oxtw(1-y/2)) dg2oa?’ ’
The REML (restricted maximum likelihood) estimatoraof
then, by using the Bonferroni inequality, we finally get theis the generalized least squares estimator
approximate(1 — a — y) confidence interval fov,, = ap +

alu+32u2+"'+ak“k a:¢(012,022)X’(V(012,02))715
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with 1 and finally,
®(02,02) = (X' (V (02,02)) *X) . g, K+3
(01,0%) ( ( ( 1 2)) ) u 4+(k+1)p—l’
The REML estimator of is unbiased. Kenward and Roger u 1
[7] recommend to use an adjusted estimator of the small sam- A= u—2 K+ 1A2

ple covariance matrix ci ) ) )
The (1— a) confidence region for vectarusing the Ken-
ward and Roger’s method is

®p = D(G7,53) +20(7,53) {ZZ{W}'J Uij— { ~-1
Ci_q)=1a: (@a—a)®, (a—a)

PO 1 PO
PIO(G2. G3)P; R.,>}¢<af,o§> 1

IN

— Ferru(l- 0’)}

If inferences are made about the linear combinatiarof

where fori = 1,2

P _ X/ ov—1 X 20 the elements oé (e.g., we are interested in tig— a) confi-
= doiz 02— 2" (20) dence interval fol’a), then according to Kenward and Roger
%= 03 in[7]
U, =x 2 oV X a—a)l(rea) 1@ e
075007 a2V g7 |- X @ (1) 1@-a)~ gpFuny
22V where()A andu are calculated as follows:
Rij = /Vflﬁ , VX
g 907 | 1= % 0 1 2 2 L
e PN A= (|’¢(01,02 Z 01702)}” )
and {W};; is the i, j)-th element of the matrixV (62, 62)
given in ©). _ x (VORI (I'DOP;DI)
Inferences are to be made simultaneously about the (whole)
vectora. Kenward and Roger irv] showed that the statistics Hp — [N
2(k+1) ’
1 a1 1
m(a*a) Py (@—a)~ XFk—s-l,u (I)Cl o -3
3(k+ 1)(k+3)+2(k+6)’
hals alpprgximftﬁzly%ﬁ@rlyu distribution, whereA andu are e + (k+1)(k+3)
calculated as follows: 2 = (k+1)(k+3)+2(k+6)
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APPENDIX2 — SIMULATION RESULTS
The simulation results presented in the tables are exglame

Section 7.

Table 1. Polynomial of degree 23(x) = 0.25+ 0.5x+ 0.05x?

u=(0;25;5 KR1 KR2 = (0;1;..9) KR1 KR2
0x = 0.125 0y = 0.0625 0x = 0.125 oy = 0.0625
n=2 0.8763 0.8763 n=2 0.9263 0.9264
n=3 0.9246 0.9246 0.9376 0.9376
n=4 0.9361 0.9361 0.9407 0.9409
n=5 0.9409 0.9409 0.9470 0.9470
n=10 0.9466 0.9466 0.9499 0.9500
n=20 0.9501 0.9501 0.9511 0.9511
0x = 0.25.0y = 0125 0x=0.250y = 0125
n=2 0.8925 0.8925 n=2 0.9268 0.9268
n=3 0.9209 0.9209 0.9406 0.9407
n=4 0.9279 0.9279 0.9429 0.9430
n=5 0.9365 0.9365 0.9434 0.9435
n=10 0.9432 0.9432 n=10 0.9480 0.9481
n=20 0.9518 0.9518 n=20 0.9456 0.9456
ox = 0.5, oy = 0.25 ox = 0.5, oy = 0.25
n=2 0.9412 0.9412 n=2 0.9174 0.9178
n=3 0.9306 0.9306 n=3 0.9288 0.9288
n=4 0.9272 0.9272 n=4 0.9332 0.9333
n=5 0.9283 0.9283 n=5 0.9353 0.9354
n=10 0.9416 0.9416 n=10 0.9458 0.9458
n=20 0.9447 0.9447 n=20 0.9461 0.9461
ox=1.0y=05 ox=1.0y=05
n=2 0.9481 0.9481 n=2 0.9066 0.9072
n=3 0.9328 0.9328 n=3 0.9093 0.9096
n=4 0.9268 0.9268 n=4 0.9200 0.9202
n=5 0.9302 0.9302 n=5 0.9219 0.9220
n=10 0.9293 0.9293 n=10 0.9364 0.9364
n=20 0.9353 0.9353 n=20 0.9409 0.9409
Table 2. Polynomial of degree 8z(x) = 2+ 0.3x+ 0.01x?
1= (0;25;50" KR1 KR2 = (0;10;...;90) KR1 KR2
Ox = 1.25,0y = 0.625 Ox = 1.25.0y = 0.625
n=2 0.8692 0.8692 n=2 0.9249 0.9250
n=3 0.9212 0.9212 n=3 0.9364 0.9364
n=4 0.9340 0.9340 n=4 0.9417 0.9418
n=5 0.9434 0.9434 n=5 0.9454 0.9455
n=10 0.9488 0.9488 n=10 0.9482 0.9484
n=20 0.9516 0.9516 n=20 0.9531 0.9531
ox =2.5,0y =125 ox =250y =125
n=2 0.8865 0.8865 n=2 0.9210 0.9211
0.9257 0.9257 n=3 0.9386 0.9388
0.9332 0.9332 n=4 0.9445 0.9447
0.9361 0.9361 n=5 0.9489 0.9490
0.9464 0.9464 n=10 0.9468 0.9469
0.9491 0.9491 n=20 0.9476 0.9476
Ox=5,0y =25
0.9473 0.9473 n=2 0.9230 0.9236
0.9376 0.9376 n=3 0.9349 0.9353
0.9345 0.9345 n=4 0.9430 0.9431
0.9401 0.9401 n=5 0.9407 0.9411
0.9462 0.9462 n=10 0.9466 0.9468
0.9505 0.9505 n=20 0.9475 0.9475
ox=100y=5
0.9508 0.9508 n=2 0.9253 0.9260
0.9363 0.9363 n=3 0.9302 0.9370
0.9381 0.9381 n=4 0.9328 0.9329
0.9362 0.9362 n=5 0.9368 0.9368
0.9366 0.9366 n=10 0.9437 0.9437
0.9466 0.9466 n=20 0.9468 0.9469

Table 3. Polynomial of degree 33(x)

= —0.8+ 2.46x— 0.38x% + 0.025¢

1= (1;35;6;85) KR1 KR2 1= (0;1;...;10/ KR1 KR2
0x = 0.125 0y = 0.0625 0x = 0.125 0y = 0.0625
n=2 0.8731 0.8731 n 0.9228 0.9230
n=3 0.9153 0.9153 0.9368 0.9370
n=4 0.9342 0.9342 0.9429 0.9429
n=5 0.9420 0.9420 0.9439 0.9441
n=10 0.9431 0.9431 0.9447 0.9447
n=20 0.9509 0.9509 0.9475 0.9475
0x =0.25.0y = 0.125
n=2 0.8684 0.8684 0.9145 0.9146
n=3 0.9070 0.9070 n=3 0.9298 0.9299
n=4 0.9321 0.9321 n=4 0.9352 0.9353
n=5 0.9382 0.9382 n=5 0.9418 0.9418
n=10 0.9422 0.9422 n=10 0.9480 0.9480
n=20 0.9463 0.9463 n=20 0.9462 0.9462
ox =05,0y =025 ox =05,0y =025
n=2 0.8583 0.8583 n=2 0.9074 0.9075
n=3 0.8979 0.8979 n=3 0.9203 0.9205
n=4 0.9195 0.9195 n=4 0.9243 0.9244
n=5 0.9231 0.9231 n=5 0.9311 0.9311
n=10 0.9388 0.9388 n=10 0.9441 0.9442
n=20 0.9460 0.9460 n=20 0.9465 0.9466
ox =10y =05 ox =10y =05
n=2 0.8997 0.8997 n=2 0.8610 0.8619
n=3 0.8822 0.8822 n=3 0.8776 0.8784
n=4 0.8717 0.8717 0.8943 0.8948
n=5 0.8759 0.8759 n=5 0.9032 0.9036
n=10 0.9073 0.9073 n=10 0.9219 0,9219
n=20 0.9322 0.9322 n=20 0.9294 0.9295

Table 4. Polynomial of degree 3,
g3(X) = 0.00023E¢ —0.035¢ 4 2.2x+ 1

1 = (10;35;60;85 KR1 KR2 KR1 KR2
ox = 1.25, 0y = 0.625 ox = 1.25, 0y = 0.625
n=2 0.8778 0.8778 n=2 0.9242 0.9243
n=3 0.9219 0.9219 n=3 0.9415 0.9415
0.9376 0.9376 0.9414 0.9414
n=5 0.9412 0.9412 n=5 0.9461 0.9461
n=10 0.9433 0.9433 n=10 0.9481 0.9482
n=20 0.9520 0.9520 n=20 0.9457 0.9457
Ox =25,0y =125 Ox = 25,0y =125
0.8776 0.8776 0.9147 0.9150
0.9136 0.9136 0.9354 0.9354
n=4 0.9310 0.9310 n=4 0.9354 0.9356
n=5 0.9375 0.9375 n=5 0.9393 0.9359
n=10 0.9458 0.9458 n=10 0.9452 0.9454
n=20 0.9479 0.9479 n=20 0.9489 0.9489
0x = 5,0y =25 ox = 5,0y =25
n=2 0.8683 0.8683 n=2 0.9010 0.9011
n=3 0.8973 0.8973 n=3 0.9155 0.9159
n=4 0.9235 0.9235 n=4 0.9200 0.9204
n=5 0.9218 0.9218 n=5 0.9297 0.9298
n=10 0.9382 0.9382 n=10 0.9457 0.9457
n=20 0.9442 0.9442 n=20 0.9413 0.9414
ox =100y =5 ox =100y =5
n=2 0.9058 0.9058 n=2 0.8633 0.8639
n=3 0.8856 0.8856 n=3 0.8773 0.8777
n=4 0.8796 0.8796 n=4 0.8911 0.8915
n=5 0.8900 0.8900 0.9045 0.9047
n=10 0.9098 0.9098 n=10 0.9215 0.9215
n=20 0.9306 0.9306 n=20 0.9346 0.9347
Table 5. Polynomial of degree 4,
f4(x) = —0.45+ 0.8x+ 0.35¢% — 0.07¢% + 0.003%*
1= (0;25;...;10/ KR1 KR2 u=(0;1;..;11) KR1 KR2
0Ox = 0.125 0y = 0.0625 0x = 0.125 0y = 0.0625
n=2 0.8658 0.8658 n=2 0.9204 0.9206
n=3 0.9157 0.9157 n=3 0.9342 0.9344
n=4 0.9295 0.9295 0.9358 0.9358
n=5 0.9345 0.9345 n=5 0.9381 0.9384
n=10 0.9466 0.9466 n=10 0.9445 0.9446
n=20 0.9475 0.9475 n=20 0.9496 0.9496
ox = 0.25 0y = 0.125 ox = 0.25 0y = 0.125
n=2 0.8500 0.8500 n=2 0.8995 0.8996
n=3 0.9108 0.9108 n=3 0.9210 0.9211
n=4 0.9242 0.9242 n=4 0.9253 0.9254
n=5 0.9241 0.9241 n=5 0.9332 0.9333
n=10 0.9333 0.9333 n=10 0.9423 0.9423
n=20 0.9412 0.9412 n=20 0.9457 0.9457
ox =0.5,0y =025 ox =0.5,0y =0.25
n=2 0.8658 0.8658 n= 0.8859 0.8859
n=3 0.9025 0.9025 n=3 0.8991 0.8992
n=4 0.9134 0.9134 n=4 0.9084 0.9086
n=5 0.9169 0.9169 n=5 0.9176 0.9177
n=10 0.9211 0.9211 n=10 0.9268 0.9268
n=20 0.9296 0.9296 n=20 0.9376 0.9376
ox =10y =05 ox =10y =05
n=2 0.9334 0.9334 n=2 0.8297 0.8306
n=3 0.9121 0.9121 n=3 0.8628 0.8634
n=4 0.9086 0.9086 n=4 0.8782 0.8790
n=5 0.9114 0.9114 n=5 0.8951 0.8955
n=10 09172 0.9172 n=10 0.9068 0.9068
n=20 0.9247 0.9247 n=20 0.9146 0.9146
Table 6. Polynomial of degree 4,
ga(X) = 5— 2.47x+0.175¢ — 0.0027% + 0.00001%*
1= (0;25;...;100 KR1 KR2 W =(0;10;...;110 KR1 KR2
ox = 1.25, 0y = 0.625 ox = 1.25 0y = 0.625
n=2 0.8605 0.8605 n=2 0.9193 0.9200
n=3 0.9157 0.9157 n=3 0.9388 0.9392
n=4 0.9316 0.9316 n=4 0.9464 0.9469
n=5 0.9356 0.9356 n=5 0.9443 0.9446
n=10 0.9482 0.9482 n=10 0.9537 0.9537
n=20 0.9494 0.9494 n=20 0.9479 0.9479
ox =25,0y =125 ox =25,0y =125
n=2 0.8527 0.8527 n=2 0.9159 0.9162
n=3 0.9090 0.9090 n=3 0.9341 0.9348
n=4 0.9254 0.9254 n=4 0.9443 0.9447
n=5 0.9399 0.9399 n=5 0.9397 0.9403
n=10 0.9423 0.9423 n=10 0.9501 0.9503
n=20 0.9482 0.9482 n=20 0.9495 0.9495
Ox = 5,0y =25 ox =5,0y =25
n=2 0.8356 0.8356 n=2 0.9092 0.9105
n=3 0.8823 0.8823 n=3 0.9256 0.9259
n=4 0.9079 0.9079 n=4 0.9296 0.9303
n=5 0.9158 0.9158 n=5 0.9392 0.9394
n=10 0.9372 0.9372 0 0.9442 0.9442
n=20 0.9431 0.9431 n=20 0.9494 0.9494
ox =100y =5 ox =100y =5
0.8794 0.8794 =2 0.8549 0.8565
0.8529 0.8529 0.8895 0.8900
0.8592 0.8592 0.8976 0.8978
0.8606 0.8606 0.9105 0.9106
0.8962 0.8962 n=10 0.9285 0.9289
0.9214 0.9214 n=20 0.9432 0.9433
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