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This paper presents a way of acquiring a sparse signal by taking only a limited number of samples; sampling and compression are performed 
in one step by the analog to information conversion. The signal is recovered with minimal information loss from the reduced data record via 
compressed sensing reconstruction. Several methods of analog to information conversion are described with focus on numerical complexity 
and implementation in existing embedded devices. Two novel analog to information conversion methods are proposed, distinctive by their 
computational simplicity – direct subsampling and subsampling with integration. Proposed sensing methods are intended for and evaluated 
with real water parameter signals measured by a wireless sensor network. Compressed sensing proves to reduce the data transfer rate by 
>80 % with very little signal processing performed at the sensing side and no appreciable distortion of the reconstructed signal. 
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1.  INTRODUCTION 

Compressed sensing (CS) [1] appeared in recent years as a 
promising method of sub-Nyquist sampling, allowing signal 
acquisition with fewer measurements than previously thought 
possible. With sparse signals, CS allows for much lower 
sampling frequencies and lower data transfer rates. The 
advantage over conventional compression is very little (if 
any) additional digital signal processing (DSP). The 
compression is performed directly by the sampling process 
and most of the overall computational demand is moved to 
the reconstruction side. This is convenient, for example, in 
wireless sensor networks (WSN), where available 
computation power is expensive at sensor nodes, but virtually 
unlimited at central hubs. Furthermore, certain methods of CS 
can be implemented on existing devices with no hardware 
changes required [2]. CS reconstruction is also inherently 
immune to data loss [3] and the transferred data are naturally 
encrypted [4]. Since its introduction, CS was tested with 
WSNs performing temperature [5], EM emission [6], and 
ECG [7] monitoring, video streaming [8], etc. Other 
applications of the CS theory include WSN decentralized data 
storage [9], accelerated MRI [10], or digital modulation 
recognition [11]. 

This work was motivated by issues with wireless sensor 
network (WSN) intended for water quality monitoring of the 
Danube river [12]. Individual sensor nodes measure multiple 
water parameter signals (WPS) such as temperature, salinity, 

dissolved oxygen, pH, etc. [13], [14], [15]. The sensor nodes 
use solar power for charging the integrated battery. Around 
90 % of the WSN node power consumption is drawn by the 
transmitter [16]. This proved to be of particular concern 
during winter months, when only a limited amount of solar 
power is available and the battery performance is reduced due 
to low temperatures. Significant reduction in power 
consumption could be achieved by decreasing the amount of 
data that are being transmitted. The issue with applying 
conventional (e.g., transform) compression methods is that 
they require a substantial number of signal samples in order 
to be effective. With the current sampling period of 1 hour 
this would mean a very long processing timeframe. The 
additional computations would also increase the power 
consumption, countering the power savings gained at the 
transmitter. These issues can be circumvented by utilizing 
CS. 

This work demonstrates that CS can be used for WPS 
measurement and efficiently implemented in an existing 
WSN. Two sampling methods previously not used with CS 
are proposed, comprising the main novelty of this paper. 
Section 2 provides an overview of general CS theory and 
related works. Investigated sampling methods and their 
properties are discussed in section 3. Experimental results are 
shown in section 4, where the performance of the proposed 
methods is evaluated. An optimal CS configuration of WPS 
monitoring sensor node is proposed at the end of section 4, 
followed by the conclusion. 
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2.  COMPRESSED SENSING 

The main goal of CS is condensing a signal into a few 
samples  containing  all  the information, which is referred to 
as analog-to-information conversion (AIC). This compressed 
information is transferred to the receiver, where the original 
signal is reconstructed. No information loss and exact 
reconstruction is theoretically possible [1]. 

In order for CS to be applicable, it is assumed that the input 
signal can be represented by a linear combination of known 
basis functions. Furthermore, the signal must be sparse, 
meaning that it consists of only a small number of basic 
functions. The signal composed of s basis functions is 

denoted as s-sparse. Let us define L  basis vectors 

LlN

l ≤≤∈ × 1,1
Rψ  to represent any possible input signal 

components. The columns of the basis matrix LN ×∈ RΨ  
consist of these basis vectors. The input signal vector 

1×∈ N
Rf   can then be described as 

 

 Ψxf =  ,  (1) 

 

where the s-sparse vector 1×∈ L
Rx  conducts linear 

combination [1]. 
 
A.  Analog-to-Information Conversion 

Conventional ADCs acquire signal samples at equidistant 
time instants, according to the Nyquist sampling theorem. 
With signals highly sparse at a certain domain, such sampling 
means great redundancy in acquired data, since the amount of 
information contained within a sparse signal is limited. AIC 
exploits this fact and only takes a limited number of samples, 
sufficient to represent the information content. The input 
signal 1×∈ N

Rf  is correlated with NM <  measurement 
signals, represented by M rows of the measurement matrix 

NM ×∈RΦ . This performs the AIC, with resulting 
information signal vector 

 

 
1×∈= M

RΦfy . (2) 

 
There are several ways of performing the AIC, either in 

analog domain, or digitally after conventional sampling [17]. 
Analog domain implementations allow for overcoming the 
Nyquist limit of fast ADCs and are used mainly for high 
bandwidth signals. Digital domain AIC is a computationally 
efficient alternative to conventional compression methods. 
Direct digital implementation of (2) is preferable if possible, 
because it avoids problems associated with analog domain 
AIC non-idealities. Random modulation and pre-integration 
(RMPI), random sampling (RS), and random filtering are the 
most discussed in literature, but other methods may be used 
for specific applications.  
 

B.  Reconstruction 

Let the input signal vector be s-sparse on basis Ψ , and let 
bases Ψ  and Φ  be incoherent (rows 

mφ  of Φ  do not 

sparsely represent the columns 
lψ  of Ψ , and vice versa). If 

NMs <<< , the input signal can be reconstructed [18]. An 
approximation of minimal M needed is given by 
 

 )(log10min NsM µ=  (3) 

 
assuming zero or negligible noise. 1=µ  for incoherent 

bases, but has to be increased to NL /=µ  if LN < . By 

inserting (1) into (2) the information signal becomes 
 

 ΦΨxy = ,  (4) 

 
with the reconstruction matrix 
 

 .LM ×∈= RΦΨA  (5) 
 
At the receiving end of the CS framework, the information 

signal y , and both bases Ψ  and Φ  are known. The only 

unknown required for reconstruction of (1) is x . Since A  is 
a rectangular matrix, it cannot be simply inverted and an 
undetermined system of M  equations and L  unknowns is to 
be solved. Here the importance of sparsity is shown, because 
based on this requirement a unique solution can be found. Out 
of all the possible solutions, the right solution is the one that 
is the most sparse [1].  

The sparsity s of vector x  can be characterized by its 1l  

norm defined as 
 

 ∑
=

=
n

i
ix

1
11 : xl . (6) 

 
Sparsity is an additional information used to devise the 

measurement process Φ , and forming a convex optimization 
problem 
 

 
yAxx =tosubject min

1
. (7)  

 
This guarantees a correct optimal solution, if such exists. 

The original signal estimate can be found more efficiently as 
 

 ( ) yAAAΨf
TT 1ˆ −

= , (8) 

   
where ( ) 1−∗  denotes the pseudoinverse matrix of ∗ . (8) 

incorporates solving an 2l  minimization problem, but in 

practical scenarios (7) and (8) yield the same solutions within 
a noise related uncertainty [19]. 

The issue with CS is determining the base matrices Ψ  and 
Φ . AIC is performed in such a way that the resulting 
measurement matrix Φ  shows random attributes, ensuring 
bases incoherency. The basis matrix Ψ  can be based on 
signal model if the sparse domain is known, e.g. frequency or 
wavelet. For other signals there is not a specific domain for 
this purpose, and a suitable dictionary must be learned. 
Correctly constructed set Ψ  of basic functions ensures high 
compression ratio and low reconstruction error. For WPS 
basis extraction the principal component analysis (PCA) [20] 
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is proposed. PCA is convenient with signals that would 
require complicated models or their analytical model is 
unknown. The PCA is particularly prominent in biomedical 
applications [21]-[24], and has been utilized for basis 
extraction in various CS applications [3], [7], [10], [25]. The 
CS framework with both sensing and decoding side is 
summarized in Fig.1. 
 

 
 

Fig.1.  CS framework. 
 

3.  INVESTIGATED MEASUREMENT METHODS AND MATRICES 

A.  Random modulation and pre-integration 

The RMPI method of AIC is probably the most studied. A 
functional diagram of analog RMPI is shown in Fig.2. Input 
signal )(tf  is multiplied by sequence )(tp  of ±1’s from the 

random sequence generator (RSG). Output signal of the 
mixer is being integrated and the integrator output is 
periodically sampled by a conventional ADC. After each 
sample is taken, the integrator is reset. Sampling frequency of 
the ADC is several times lower than the input signal Nyquist 
frequency. The only component operating at Nyquist rate is 
the mixer, any further DSP is performed after compression at 
a lower rate. The compression itself is performed in the 
analog domain without DSP. This allows for real-time 
energy-efficient compression of very high bandwidth signals.  
 

 
 

Fig.2.  Analog RMPI AIC. 

 
The main disadvantage of analog RMPI is the need for 

specialized non-ideal analog circuitry. There may be a 
discrepancy between the expected measurement process Φ  
and the actual RMPI behavior [26] resulting in improper 
reconstruction (8). Accurate modeling of physical circuitry 
[27] and stochastic phenomena mitigation [28], [29] may be 
a problem. If the acquired signal is not of excessively high 
bandwidth, RMPI may be implemented digitally as is shown 
in Fig.3. The advantage is that the reconstruction error can be 
significantly lower, since the only non-ideal component is the 
input ADC. With slow signals like WPS, digital RMPI could 
be implemented on an existing device solely via firmware 
upgrade. 

 
 

Fig.3.  Digital RMPI AIC. 
 
After the input signal is sampled by a Nyquist ADC into its 

discrete representation 
nf , the signal is multiplied by a 

random sequence 
np  of ±1’s and summed. The summator is 

being periodically reset after outputting the accumulated 
value. All of this DSP runs at Nyquist rate in real time, so the 
digital RMPI is more suitable for slow signals. Elements 

NnMmmn ≤≤≤≤ 1,1,ϕ  of the measurement matrix 
NM ×∈RΦ  representing an ideal or digital RMPI can be 

described as 
 

 

mCnCmpn

mn

≤<−





=
)1(

0

,
ϕ    (9) 

where 

  N∈=
M

N
C  (10) 

 
is the compression ratio.  
 
B.  Random sampling 

The RS AIC architecture is among the easiest to implement, 
yet it is rarely studied. RS can be achieved either by triggering 
an ADC according to RSG (Fig.5.), or simply by discarding 
samples of a free-running ADC [30]. Both of these 
approaches are suitable for high bandwidth signals. There is 
no special analog signal processing and the compression is 
performed with virtually no DSP. The RS may also be 
implemented via firmware upgrade on existing devices. 
Despite all of these advantages the RMPI is by far more 
common in literature. The reason is probably the limited 
versatility of RS. RMPI yields low sampling rate, but the 
input information present between sampling instants is 
preserved via integration. With RS all of this information is 
discarded, which practically limits the RS AIC to frequency 
sparse signals with little expected variance [30]. 

 

 
Fig.4.  Examples of measured water parameter signals. 
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A typical WPS (Fig.4.) contains a large slowly changing 
DC component, a faster AC component with relatively small 
amplitude and a small amount of noise [32]. The AC 
component is a distorted sine wave with basic period of 
approximately 1 day and a few higher harmonics. The WPS 
thus carries only limited information content and can be 
classified as frequency sparse [33], meeting the criteria for 
RS application. 

From all the Nyquist samples of input signal (1) a subset of 
M  samples is selected. Ξ  contains indices of selected 
samples 
 

 { }Mξξξ ,...,, 21=Ξ .  (11) 

 
 

 
 

Fig.5.  RS AIC. 
 

Entries of Ξ  are random numbers, following the rules 
 

 NMmm mm ≤≤∈≤≤∈∀ ξξ 1,:1, NN , (12) 

 

 jiMjiji ξξ <≤<≤∈∀ :1,, N . (13) 

 
Elements of measurement matrix representing RS AIC can 

be obtained using (13) as 
 

 

m

mn

n ξ
ϕ

=





=
0

,1
  (14) 

 
and the information signal vector y  (2) elements become 

 

 m
fym ξ= .  (15) 

 
C.  Direct subsampling 

Coherent sub-Nyquist sampling without antialiasing filter is 
not yet covered by CS related literature for an obvious reason. 
In general, proper reconstruction with such AIC is not 
possible because of aliasing. However, the basic functions of 
WPS obtained by PCA are not strictly periodic functions. 
Elements of Ψ  are general waveforms, as is shown in Fig.6. 

Only some of the basic functions resemble sinewaves with 
a period of approximately 1 day. These have a common 
composition of higher harmonics and interharmonics already 
incorporated. As such, higher harmonics are not subject to 
irreversible aliasing. The original signal can be reconstructed 
provided that the basis harmonic component is sampled at 
Nyquist rate. Irreversible input information loss occurs if the 

period of a specific higher harmonic component is exactly 
equal to the sampling period or its integer multiple.  
 

 
 

Fig.6.  The most significant WPS basis components  
obtained by PCA. 

 
The presented study considers coherent subsampling via 

decimation of a Nyquist record, hereafter referred to as direct 
subsampling (DS). Corresponding measurement matrix 
consists of elements 

 

 

mCn
mn

=





=
0

,1
ϕ  , (16) 

 
resulting in information signal (2) 
 

 mCm fy = . (17) 
 
DS is proposed as application-specific AIC for WPS because 
of its simplicity. The implementation on existing devices is 
even easier than RS, since no RSG is needed. If the existing 
Nyquist ADC has a fixed clock, samples may be discarded. 
Better energy efficiency would be achieved if the ADC clock 
could be reprogrammed to a sub-Nyquist rate, eliminating the 
need to discard samples. 
 
D.  Subsampling with integration 

Subsampling with integration (SI) is proposed as 
application-specific simplified alternative to RMPI. The 
modulator can be omitted because WPS represents absolute 
values of chemical properties and is non-alternating. Input 
signal is integrated over the sampling period, as is shown in 
Fig.7. The integrator is being periodically reset after the 
integrated signal is sampled.   

 

 
 

Fig.7.  Analog SI AIC. 
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Digital implementation of SI AIC as shown in Fig.8. may 
be preferable due to the reasons discussed in section 3.A. The 
measurement matrix changes from (11) to 

 

 

mCnCm
mn

≤<−





=
)1(

0

,1
ϕ . (18) 

 

 
 

Fig.8.  Digital SI AIC. 
 

4.  RESULTS 

Digital implementations of AIC methods described in 
section 3 were tested using WPS data obtained during the 
pilot operation of the WSN [13]. All of the tested methods 
can be implemented as a software add-on on existing sensor 
nodes. Testing was performed by means of simulations, but it 
sufficiently represents implementation on the physical WSN.  

200=′L  signal segments with length of 120=N  (5 days) 
were randomly chosen from the WPS database and 
normalized to 1. This training set was used for extraction of 

the basis matrix LN ′×∈ RΨ by the PCA. Another set of 200 
randomly chosen WPS segments was used for testing. The 
signal-to-deviation ratio  

 

 
( ) 

















−
=

∑

∑

=

=
N

n
nn

N

n
n

ff

f

SDR

1

2

1

2

ˆ

ˆ

log10  ,  (19) 

 

where nf̂  is the reconstructed signal, was used for evaluation. 

SDRs of each of the test signals were averaged. With RS and 
RMPI, 103 measurements of each test signal were performed 
with a new measurement matrix generated every time. 
 
A.  Number of principal components used for reconstruction 

Out of all the L′  extracted basis components, only a limited 
number has appreciable energy. The rest of the components 

can be left out of Ψ  with little impact on SDR. Achievable 
SDR with respect to the number of components in model (1) 
was found by using an identity measurement matrix NIΦ =  

(no resampling) and performing reconstruction (8) with 
varied L . 

Achievable SDR increases with greater L. For every 52≥L  
exact reconstruction is observed with some of the test signals. 

Exact reconstruction means that nn ff ˆ=  in (19), resulting in 

average ∞→SDR  for any 52≥L . Most of the test signals 
are noiseless, which makes exact reconstruction possible. The 

behavior of (8) with 52≥L  can be further examined by 
observing the probability of exact reconstruction (PER), 
shown in Fig.10.  

 

 
 

Fig.9.  Achievable SDR vs. number of principal components used. 

 
It can be seen that PER is never equal to 1, since some of 

the test signals are noisy. Exact reconstruction cannot be 
expected even with noiseless signals - no training set can be 
large enough to account for every possible signal variation. 
With available training set the principal component 
dictionary Ψ  saturates around 100=L . Increasing the 
number of principal components further brings no 
appreciable improvement.  

Based on results shown in Fig.9. and Fig.10., the number of 
principal components used was chosen to be 50=L , which 
applies to all further evaluations. 200<L  was chosen on 
purpose in order to simulate an unsaturated principal 
component dictionary expected in practical applications. 
Smaller L also results in faster reconstruction due to smaller 
size of matrices while having no impact on AIC. 

 

 
Fig.10.  PER vs. number of principal components used. 

 
B.  Required sampling rate 

The actual threshold of M  required for successful 
reconstruction is a subject of debates. Analytical derivations 
such as (3) have been presented, but their use may be difficult 
in practice. The actual signal sparsity is unknown in advance, 
particularly with numerically learned [20] bases and signals 
degraded by random and quantization noise. 
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Fig.11.  SDR vs. compression ratio. 

 
Any analytical derivation of minM  is probabilistic. 

Choosing minMM <  does not mean that the reconstruction is 

impossible, but rather that there is a high risk of picking 
particular signal values that result in unsuccessful signal 
recovery. The most reliable way of choosing an appropriate 
M  for certain application is an experiment, where M  is 
varied and reconstruction error is observed. Unknown s  on a 
particular Ψ  base can be determined retroactively by 
observing x  in successful reconstructions. SDR as a function 
of compression ratio (12) for investigated AIC methods is 
shown in Fig.11. 

The performance of all AIC methods is similar within 
approximately 6dB SDR range. SI achieves the highest SDR 
at both small and high compression ratios, while RS and 
RMPI perform slightly better in the intermediate range. DS 
may be preferable due to its simplicity, despite worse 
performance at high C . The final choice of AIC method 
implemented in WSN would strongly depend on the required 
SDR. 

 
C.  Resistance to quantization 

High ADC resolution, denoted in number of bits (NOB), is 
easily achievable with signals as slow as WPS. However, the 
total amount of data payload that is to be transferred is 
proportional to NOB. Lower NOB is beneficial for overall 
sensor node power consumption, and can be achieved by 
rescaling existing high-resolution samples. Influence of 
quantization on SDR was tested using a simulated ideal 
unipolar ADC with a range of 2. Results for 6=C  and 
varying resolution are shown in Fig.12. 

 

 
 

Fig.12.  SDR vs. ADC resolution. 

RS and DS show slightly greater robustness against 
quantization than RMPI and SI. The highest SDR is 
achievable by SI, which is consistent with results from the 
previous section. Increasing NOB above 12 yields virtually 
no improvement in SDR with all evaluated AIC methods. 

 
D.  Requirements on the reconstruction error 

Results presented above show that the SDR is dependent on 
compression ratio and quantization noise. The specific 
combination of C and NOB defines the power consumption, 
which is in trade-off with the SDR. How high the SDR should 
be, and whether the introduced misinformation is of any 
concern, remains to be decided by the end user. Experiments 
show that SDR above 30 dB is enough to capture the slowly 
changing DC component of any available WPS. In order to 
preserve the smallest AC components present in the database, 
SDR should remain above 50 dB.  

The authors propose to use SI AIC with 6=C  and 
12=NOB . The power consumption with such configuration 

would be reduced by approximately 80 % while maintaining 
dB50≥SDR . An example of input and reconstructed signal 

obtained with this configuration and dB43.51=SDR  is 
shown in Fig.13. Further reduction of power consumption is 
possible at the cost of lower SDR. 

 

 
Fig.13.  Example of input and reconstructed signal, SI method, 

C=6, NOB=12, SDR=51.43 dB. 

 
5.  CONCLUSION 

CS was originally promoted as near-optimal and lossless on 
orthonormal bases. However, practical WPS results show that 
the reconstruction is not exact if appreciable compression 
ratio is achieved. This was also concluded in some of the cited 
works on other CS applications, e.g. ECG [7]. Considering 
the reasonable compression at minimal computation effort, 
CS is still a reasonable choice for WPS monitoring WSN. RS 
and RMPI methods of AIC have been previously used in 
WSNs and proved to be efficient also with WPS. The 
presented DS and SI methods pose even lower computational 
demand on the sensor node. The SI method at the same time 
outperforms previously presented AIC methods in achievable 
SDR. AIC configuration that would reduce the sensor node 
power consumption by approximately 80 % was proposed 
and remains to be implemented on existing WSN nodes. 
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