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The article presents the possibilities of using the function of conditional average value of a delayed signal (CAV) and the function of 
conditional average value of a delayed signal absolute value (CAAV) to determine the time delay estimation (TDE) of random signals. For 
discrete CAV and CAAV estimators, the standard uncertainties of the estimation of function values at extreme points and the standard 
uncertainties of the TDE were given and compared with the corresponding uncertainties for the direct discrete cross-correlation function 
(CCF) estimator. It was found that the standard uncertainty of TDE for CAV is lower than for CCF independent of signal-to-noise ratio 
(SNR) for parameter values of α ≥ 2 and M/N ≥ 0.25 (where: α - relative threshold value, M/N – quotient of number of averaging and 
number of samples). The standard uncertainty of TDE for CAAV will be lower than for CCF for SNR values greater than 0.35  
(for N/M = 1).  
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1.  INTRODUCTION 

Time delay estimation (TDE) is a common problem in 
signal processing. This problem is important, inter alia, in 
radar technology, radioastronomy, medicine, localization of 
disturbance pathways, and non-contact measurements of 
two-phase flows. For the determination of time delay of 
stochastic signals obtained from two or more sensors, 
statistical methods are commonly used. This issue is widely 
presented in the literature, among others [1]-[10], where a 
number of methods based on analysis of time and frequency 
signals are described. The range of applications of particular 
methods depends on the characteristics of the measurement 
signals (stationarity, probability distribution, correlation), 
signal-to-noise ratio (SNR), and analysis parameters. 
Among the classical methods used for Gaussian stationary 
signals, the most common are the cross-correlation function 
(CCF) in the time domain and phase of cross-spectral 
density in the frequency domain [1], [8], [10]-[15]. For the 
above types of signals under certain conditions, differential 
and combined methods [4]-[6], the Hilbert Transform-based 
correlation method [16]-[17], and the relatively little-known 
methods based on conditional averaging [18]-[20] can be 
used.  

This paper presents the applicability of the conditional 
average value of the delayed signal (CAV) and the 
conditional average value of the delayed signal absolute 
value (CAAV) to the TDE in relation to the CCF. For the 

selected signal models, the range is determined for the SNR 
values for which the methods under consideration have 
lower standard uncertainties than the CCF method with the 
specified analysis parameters.  

The paper is organized as follows. Section 2 gives the 
mathematical models of measurement random signals. The 
basics of the TDE using the classical cross-correlation 
method are reviewed in section 3. Section 4 presents the 
application of conditional averaging methods CAV and 
CAAV to TDE and the analysis of measurement 
uncertainties for these methods in comparison with the CCF. 
The last section contains the summary of the presented study 
and final conclusions. This article is an extended and 
improved version of a previous conference publication [20]. 
 
2.  MODELS OF SIGNALS 

Measurement of the time delay of random signals during 
their propagation in physical systems involves active and 
passive experiments. In the active experiment, external 
random extortion is used. In the passive experiment, natural 
conditions in the object of measurement are used to generate 
measurement signals. The full measurement model should 
take into account inaccuracies in terms of input and output 
signals, resulting from difficult experimental conditions, and 
the impact of disturbance. Simplification of the random 
signal time delay measurement model may lead to a 
reduction in accuracy of the TDE. 
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In time delay estimation, the models of stochastic signals 
x(t) and z(t) obtained under stationary conditions with two 
sensors in a passive experiment can be presented as [1]: 

 
 )()()( 1 tntstx +=                              (1) 

 
 [ ] )()()()()( 220 tntytntsctz +=+−= τ  (2) 
 

where: s(t) and z(t) – observed input and output stationary 
random signals; c - constant factor (usually c = 1); τ0  – 
transmission time delay; n1(t), n2(t) – stationary signals, 
uncorrelated with the signal s(t) and with each other, which 
may in general contain constant, periodic and random 
components. This paper assumes that the signals n1(t) and 
n2(t) are stationary Gaussian white noises N(0,σn1), N(0,σn2), 
uncorrelated with the signal s(t) and mutually with each 
other.  

With the above assumptions for signal models (1) and (2), 
the following relationships are true: 

 
 2

1
22 )0( nsxxx R σσσ +==  (3) 

 
 2

2
222 )0( nszzz cR σσσ +==  (4) 

 
 )()()( 0210 τττττ −+−= nnsssz RcRR  (5) 
 
Where: σs, σx, σz, σn1, and σn2 - standard deviations of 

signals s(t), x(t), z(t), n1(t), and n2(t), respectively; Rxx(τ), 
Rzz(τ), and Rss(τ) - autocorrelation functions of signals x(t), 
z(t), and s(t), respectively; τ - time delay;  Rsz(τ) - CCF of 
signals s(t) and z(t); Rn1n2(τ) - CCF of signals n1(t) and n2(t).  

In the active experiment for determining the transmission 
time delay, the conditions of action of the test input signal 
are specified and controlled (no disturbances). Conversely, 
output noise can lead to the action of only a random 
component n(t) with the distribution N(0,σn). With these 
assumptions, the models of stochastic signals received from 
the sensors are represented by the following formulae: 

 
 )()( tstx =  (6) 
 
 )()()()()( 0 tntytntxctz +=+−⋅= τ  (7) 
 

which constitute a simplification of models (1) and (2) with 
the assumptions n1(t) = 0 and n2(t) = n(t). 

Since the signals x(t) and n(t) are not correlated, for the 
delayed signal (7) we have the following equations: 

 

  (c nxz
22) σσσ +=  (8) 

 
 )()( 0τττ −= ssxz cRR  (9) 
 

where Rxz(τ) - the cross-correlation function of signals x(t) 
and z(t). 

This paper assumes that the signal s(t) is low-pass white 
noise with bandwidth B. The autocorrelation function of this 
signal in equations (5) and (9) can be represented by: 

 

 





=

τπ
τπτ

B
BKBRss 2

2sin)(                           (10) 

 
or another modified exponential model [21]. 

Experimental research usually uses normal or quasi-
normal probability distributions of the processed signals.  

 
3.  CORRELATION PRINCIPLE OF TDE 

Most of the descriptions in the literature on the cross-
correlation method of determining the transmission time 
delay use dependencies (1) and (2) or (6) and (7). The CCF 
achieves the maximum value for τ = τ0, so the transmission 
time delay can be defined as the main argument of this 
function (Fig.1.): 

 

 )}({arg)}(arg{max 00 τττ xzxz RR ==             (11) 
 
a) 

 
b) 

 
 

Fig.1.  The concept of determining the transmission time delay τ0 
from the cross-correlation function: a) the waveforms x(t) and z(t); 
b) the CCF Rxz(τ). 

 
The normalized CCF (9) is equal to: 
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and after substitution τ = τ0: 
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Assuming the same disruption at the input and output 

(σn1 = σn2 = σn) for signal models (1) and (2), after 
substituting (3) and (4) to the equation (13), we obtain [22]: 
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where 
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Similarly, for signal models (6) and (7) we have: 
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20
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SNRcxz τρ  (16) 

 
In the absence of disruption in both cases ρxz(τ0) = 1. 
The plots of the relations (15) and (16), referred to 

hereafter as model I and model II, respectively, are shown in 
Fig.2. Particularly equations (15) and (16) and their graphs 
can be very useful in practice. Based on them, for obtained 
experimental values of normalized CCF ρxz(τ) and assumed 
signal models, the SNR value can be estimated at an 
unknown value of n(t). 

 

 
 

Fig.2.  Plot of the relation (14) (Model I) and  
(16) (Model II) for c = 1. 

 
For further analysis, the equation (16) will be used as the 

most commonly used signal model in practice. If the 
waveforms x(t) and z(t) are of length Ttotal, the variance of 
the CCF estimator for τ = τ0 is given by [1]: 

 

 [ ] [ ])()0()0(
2

1)(ˆ
0

2
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2 ττσ xzzzxx
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xz RRR
BT

R +≈        (17) 

 
Dependency (17) is appropriate for large values of Ttotal 

( τ10≥totalT  and 5≥totalBT ).  
For digital analysis methods, we can take totaltotal NBT =2  

[15] where )/int( tTN totaltotal ∆= , int - integer, and Δt is a 
properly chosen sampling period. Transforming (17) we 
obtain: 

 [ ] [ ])(1)(ˆ
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22
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When estimating CCF using pairs of uncorrelated samples 

divided into N-cycles, on the basis of (18) taking into 
account (16) we obtain the relative standard uncertainty of 
the function value:  

 

 ( )[ ] ( )[ ]
( ) SNRcNR

RRu
xz

xz
xzrel 2

0

0
0

121ˆˆ +==
τ
τσ

τ          (19) 

 
A discrete CCF estimator can be expressed as: 
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where: l = τ/Δt, n = t/Δt. 

For a large number of samples, N is used in the 
denominator of dependency (20) instead of N - l. 

The standard uncertainty of transmission time delay τ0, 
determined from CCF, is given by [20]: 
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For signal models (6) and (7), using the equation (19) in 

(21) we obtain: 
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4.  APPLICATION OF CONDITIONAL AVERAGING TO TDE OF 
THE RANDOM SIGNALS  

The transmission time delay can be determined with the 
use of conditional expected values: delayed signal z(t) and 
delayed signal absolute value |z(t)|. Sections 4.1 and 4.2 
illustrate the concept of particular methods and their 
standard uncertainties with respect to the cross-correlation 
method for signal models (6) and (7). 

 
4.1.  Conditional average value of the delayed signal  

The conditional expected value of the delayed signal z(t) 
(7) for the condition x(t) = xp is defined as [20]: 
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where 




 +

= pxtxtzp )()( τ  represents the conditional 

probability density of the signal z(t) for the condition x = xp; 
E(∙) is the expected value; xp is the set threshold value. 
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In the case of independence of signal x(t) and disturbance 
n(t), the expected value of the delayed signal z(t) is also 
independent of n(t): 
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If the signals x(t) and y(t) are normal together, with 

average values of zero, then the conditional probability 
density of the signal y(t + τ) at the condition x(t) = xp, is 
expressed as follows [19]: 
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with the conditional expected value: 
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and conditional variance:  
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The relationship between Az(τ) and the normalized CCF 

ρxz(τ) is given by the formula: 
 

 ( ) pxz
x

z
z xA ⋅= τρ

σ
στ )(                       (28) 

 
A good estimate of the conditional expected value is the 

arithmetical conditional average value of the signal. Its 
designation in practice consists in detecting mutually 
uncorrelated moments of transition of the signal x(t) through 
the level xp, run at these moments registering fragments of 
the delayed signal z(t) and averaging those fragments in the 
set: 

 

 ∑
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where M is the number of averaged uncorrelated segments 
of the delayed signal z(t). 

The position of the main maximum of CAV function 
defines the transmission time delay as in the case of CCF 
(Fig.3.). 

a) 

 
b) 

 
 

Fig.3.  The concept of TDE using CAV function: a) the signals 
x(t) and z(t), b) the CAV function Az(τ). 

 
The CAV variance for M averaging is determined by the 

formula: 
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4.1.1.  Comparison of standard uncertainties of estimation 
of CAV and CCF function values in the neighborhood of 
extreme points 

The relative standard uncertainty of the CAV function 
estimation for τ = τ0 taking into account (28), (30), (16), and 
(8) can be presented by [20]: 
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where α =( xp/σx) - relative threshold value. 

After dividing equation (31) by (19), the quotient of 
relative uncertainties of CAV and CCF is obtained as: 
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Since CAV and CCF are determined on the basis of 

uncorrelated signal samples, the M/N quotient may be 1 or 
less than unity. The plot of the relation 

( ) ( ) ( )SNRfRuAu xzrelzrel =]ˆ[/]ˆ[ 00 ττ  for M/N = 1, c = 1 
and several selected values of α is shown in Fig.4. In this 

case, the relative standard uncertainty ( )]ˆ[ 0τzrel Au  will be 

less than ( )]ˆ[ 0τxzrel Ru for the value α ≥ 1. 
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Fig.4.  Plot of the relation ( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  

for M/N = 1, c = 1 and selected values of α. 
 
In the work [19] it has been shown that the optimum value 

of α is about 2. Fig.5. shows a plot of the dependency 

( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  for α = 2, c = 1 and 

several selected M/N quotient values. 
 

 
 

Fig.5.  Plot of the relation ( )[ ] ( )[ ] ( )SNRfRuAu xzrelzrel =00
ˆ/ˆ ττ  

for α = 2, c = 1 and selected values of M/N ratio. 
 

4.1.2.  Comparison of the standard uncertainties of TDE for 
CAV and CCF 

For the CAV function, the standard uncertainty of the TDE 
can be represented by the equation [20]: 
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B
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After taking into account (30) we get: 
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By comparing (34) and (22) we finally obtain: 
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The plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for 
M/N = 1, c = 1 and a few selected values of α is shown in 
Fig.6.  

 

 
 

Fig.6.  Plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for 

M/N = 1, c = 1 and a few selected values of α. 
 
Fig.7. shows the plot of the relation (35) for α = 2, c = 1 

and a few selected M/N quotient values.  
 

 
 

Fig.7.  Plot of the relation [ ] [ ] ( )SNRfuu CCFCAV =00 / ττ  for α = 2, 
c = 1 and selected values of M/N. 

 
Based on Fig.7., it can be stated that the standard 

uncertainty of TDE using CAV is lower than for CCF 
independent of SNR values for α ≥ 2 and M/N ≥ 0.25. 

 
4.2.  Conditional average value of the absolute value of 
delayed signal 

The conditional expected value of the delayed signal 
absolute value |z(t)| for the condition x(t) = 0 is defined by 
the equation [21]: 
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where 




 +

=0)(
)(

tx
tzp τ  represents the conditional 

probability density of the z(t) signal absolute value for the 
condition x(t) = 0.  

For a normal probability density function 






 +

=0)(
)(

tx
tzp τ  on the basis of (36), the CAAV A|z|(τ) 

is obtained in the form [23]:  
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Transmission time delay is determined by the position of 

the main minimum of the CAAV function: 
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After normalization, the equation (37) takes the form: 
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Fig.8. shows a comparison of the normalized CAAV 

)(τza and CCF ρxz(τ) functions for SNR = ∞ (n(t) = 0), and 

SNR = 5. 
 

 
 

Fig.8.  Examples of normalized CAAV )(τza  and  

CCF ρxz(τ) functions. 
 
The function )(τza  is characterized by a sharper 

extremum than the function ρxz(τ). A decrease of the SNR 
value results in a decrease of the main CCF maximum by 
formula (16) and, respectively, growth of the main CAAV 
minimum according to: 
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A good estimate of the expected conditional value (36) is 

the arithmetical conditional average value of the delayed 
signal absolute value. Determining the CAAV estimator 

involves detecting mutually uncorrelated transition times of 
the original signal x(t) across zero, triggering at these 
moments registration of fragments of the delayed signal 
absolute value |z(t)| and averaging those fragments in the set 
according to the formula: 
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The variance of the CAAV estimator for M averages is 

determined by the equation [18]: 
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4.2.1.  Comparison of the standard uncertainties of 
estimation of CAAV and CCF values in the neighborhood of 
extreme points 

Based on equation (42) after taking into account (16), the 
relative standard uncertainty of the CAAV value estimation 
is obtained as: 
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By comparing (43) and (19) we find [23]: 
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Fig.9.  Plots of the relation [ ] [ ] )()(ˆ/)(ˆ

00 SNRfRuAu xzrelzrel =ττ  

for a few values of N/M ratio [23]. 
 
The plot of the relation (44) for c = 1 and several N/M 

quotient values is shown in Fig.9. As can be seen in the 
SNR range under consideration, the relative standard 
uncertainty of CAAV is always less than the corresponding 
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CCF uncertainty for N/M values less than or equal to 10. In 
practice, the value of the N/M quotient depends on the 
interval of the correlation of the measurement signals, which 
determines the choice of uncorrelated samples. 

 
4.2.2.  Comparison of the standard uncertainties of TDE for 
CAAV and CCF 

The standard uncertainty of the τ0 transmission time delay 
estimation from the CAAV function is given by [22]: 
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After taking into account equations (45), (16), and (19), 

we obtain the relation [ ] [ ] )(ˆ/ˆ
00 SNRfuu CCFCAAV =ττ : 
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a) 

 
b) 

 
 

Fig.10.  Plots of the relation [ ] [ ] )(ˆ/ˆ
00 SNRfuu CCFCAAV =ττ  for 

c = 1 and a few N/M quotient values; a) SNR range from 
0.01 to 100, b) SNR range from 0.1 to 10. 

The plot of the relation (46) for c = 1 and several N/M 
quotient values is shown in Fig.10. Fig.10.b) shows an 
enlarged area for which the quotient 
[ ] [ ]CCFCAAV uu 00 ˆ/ˆ ττ assumes values close to 1. Based on the 

graphs shown in Fig.10., it can be concluded that the 
standard uncertainty of TDE using CAAV will be less than 
for CCF for SNR values greater than 0.35 (for N/M = 1). An 
increase in the N/M quotient results in an increase in the 
SNR limit value, for which the standard uncertainty of the 
CAAV time delay estimation is less than for CCF. For SNR 
= 1 equalization of the values CAAVu ]ˆ[ 0τ  and CCFu ]ˆ[ 0τ  
occurs for N/M = 5.25. 

 
5.  SUMMARY 

The article presents the application of two methods of 
conditional signal averaging to determine the transmission 
time delay of stochastic signals. These methods are based on 
analysis of the CAV and CAAV functions. In the first part 
of the paper we give the models of measurement signals 
used in the TDE of random signals and, for comparative 
purposes, the principle and main metrological characteristics 
of the cross-correlation method.  

The main part of the paper presents the concept of 
application of the conditional averaging to TDE. For 
discrete CAV and CAAV estimators, the standard 
uncertainties of the estimation of function values in the 
neighborhood of the extremes and the standard uncertainties 
of the TDE were analyzed and compared with the 
corresponding uncertainties for the direct discrete CCF 
estimator. For the most commonly used TDE models of 
measurement signals, the range of SNR values is defined, 
for which the methods under consideration have lower 
standard uncertainties of estimation at specified analysis 
parameters. It was found that the standard uncertainty of 
TDE using CAV is lower than for CCF independent of SNR 
values for parameter values of α ≥ 2 and M/N ≥ 0.25. The 
standard uncertainty of TDE applying CAAV will be lower 
than for CCF for SNR values greater than 0.35 (N/M = 1). 
An increase in N/M results in an increase in the SNR, for 
which the standard uncertainty of the CAAV time delay 
estimation is lower than for CCF. 

This paper presents the basics and the results of theoretical 
analysis of CAV and CAAV methods. The authors carried 
out a simulation and experimental study of the properties of 
conditional averaging methods in TDE of stochastic signals 
[23]-[25]. Successful attempts have also been made to use 
the conditional signal averaging methods in radioisotope 
measurements of two-phase flows [26], [27]. 
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