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In the vacuum thermoforming process, the product deviations depend on several parameters of the system, which make the analysis, the 
computational modeling, and the optimization of errors a multi-variable process with conflicting objectives. In this sense, the aim of this 
work was to study the dimensional and geometrical errors as well as the optimization (minimization) of these errors in one typical vacuum 
thermoforming product made of polystyrene (PS). In particular, it was intended to predict and minimize errors in a range of ideal tolerances 
using Multiple Response Optimization (MRO) Models. Thus, through the fractional factorial design (2k-p), initial experimental tests were 
performed using proposed measurement procedures, and Analysis of Variance being the data analysis is discussed. Following that, the MRO 
models were implemented which were also validated to represent the sample data. Through this analysis of the results, it can be concluded 
that the regression models of errors are not linear functions, hence, the developed models are valid for the studied process, and finally that 
the validation results proved the efficiency of MOR models developed, but these models will not be able to generalize to new situations in a 
range far from the values studied. 
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1.  INTRODUCTION 

Thermoforming is a generic term for a set of thermoplastic 
manufacturing processes which allow the production of thin 
wall plastic parts from flat sheets or plastic films, such as 
vacuum thermoforming, also known as vacuum forming, 
drape forming technique, thermoforming with the use of air-
slip forming, and other little-used techniques such as billow 
or free bubble forming, mechanical bending, matched-mold 
forming, and twin-sheet forming, which are the earliest and 
simplest methods of thermoforming [1], [2]. 

In this context, the vacuum forming technique is defined by 
[2]-[4] as the process where the vacuum force obtained by the 
negative atmospheric pressure is used to force a preheated 
sheet  against  the  “cold” surface  of the mold, which takes 
on  its  shape. Specifically, this is the forming technique 
and/or  stretching  where  a sheet of thermoplastic material is 

preheated by a heating system (Fig.1.a), Fig.1.b)) and forced 
against the mold surface (positive or negative) by means of 
the negative vacuum pressure produced in the space between 
the mold and sheet (Fig.1.d1)), by mold suction holes and a 
vacuum pump which “sucks” the air from the space and 
“pulls” the sheet against the surface of the mold (Fig.1.d1)), 
transferring it, after cooling (Fig.1.e)) and removing  excess 
material to shape it (Fig.1.f)), [4], [5]. The typical sequence 
of this technique is presented in Fig.1. [6]. 

However, according to [7], [8], there are still a number of 
challenges to be overcome in this process, caused by the 
conflict of objectives between the quality aspects and the 
adjustments of the process control variables. The evaluation 
of the performance of the system is usually dependent on 
many processing variables such as environmental 
manufacturing characteristics, equipment characteristics, 
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stretch speed, plug characteristics, temperature of heating, 
and cooling system [1], [9], [10]. Therefore, for [7], [8], [11] 
it is necessary to understand the complex and multi-variable 
process, with non-linear characteristics and conflicting 
objectives, in order to optimize the product quality 
characteristics and reduce errors before molding the part. 

 

 
 

Fig.1.  Schematic of basic vacuum thermoforming. 
 
Several authors have developed work with the objective of 

modelling and predicting the quality of the final product of 
the vacuum thermoforming process, [12] using computational 
optimization techniques, Finite Element Method (FEM), 
Artificial Neural Network (ANN), and [7], [8] statistical 
models, aiming to predict and to optimize the quality 
characteristics. We still have the works of [10], and others 
focusing on the development of an elastic-plastic model for 
thickness analysis [2], [13]. Leite et al. describe the 
application of a methodology based on Artificial Neural 
Network models with objective function [11], the model has 
processing parameters as inputs and the product errors as 
outputs. References [6], [14]-[17] concentrated their studies 
on aspects of mold geometry and process parameters to verify 
their influence on the distribution of product thickness, [4], 
[18] have developed a methodology for optimization of 
production technologies with the product design. Martin et al. 
have studied the instrumentation and control of 

thermoforming equipment in real-time analysis with the 
control of multiple variables [19]. Other researchers have 
focused on modeling, simulation and prediction of sheet 
temperature and optimization of the heating system by 
different methods and techniques [20]-[22]. 

However, in complex manufacturing processes such as this, 
[23]-[25] suggest that the traditional approaches to process 
control fail to understand all aspects of process control or 
existing subsystems. Thus, researchers are using Multiple 
Response Optimizations (MRO) to model systems with 
multiple input and response variables, in order to minimize or 
maximize all responses based on an objective function. With 
a multi-criteria optimization problem involving more than 
one objective function to be optimized simultaneously, 
usually, the objective functions are in conflict with, or 
compete with each other, thus, the possible optimal solution 
functions do not allow the minimization of all objectives 
simultaneously. Researchers present several approaches and 
methods to optimize problems of multiple objectives [26], 
some of them reported by [27], [28].  

One of the widely adopted techniques for MOR models uses 
Multiple Linear Regression Models (MLR models) to 
describe the relationship between a response and its regressor 
variables (process parameters), and also to estimate the 
response [29]-[31]. These models described by Montgomery 
[32] are linear regression equations that contain more than 
one independent variable or regressor and a dependent or 
response variable, that are related to k regressors or variables 
of input. Thus, these models need to be developed for each of 
the response variables for the modeling of an MLR algorithm 
[33]. The developed models are converted into a system that 
combines the n individual equations and an objective function 
through the programming of a multiple response optimization 
algorithm [18], [32]. Thus, the objective of this algorithm is 
to find a satisfactory solution or several possible 
configurations of the input variables that simultaneously offer 
the best performance for the multiple objectives of the n 
models [33], using solution space of input variables [29]. 
These equations can be solved by several mathematical 
methods of solving systems of linear equations or software 
[29]. 

First, the objective of this work was to study the 
dimensional and geometrical errors and the optimization 
(minimization) of these errors in one typical vacuum 
thermoforming product. For this purpose, the manufacturing 
parameters (factors) were studied statistically to determine 
their influence on the deviations of the product (response 
variables), and then, the Multiple Response Optimization 
Method that uses Multiple Linear Regression models to 
describe the relationships of the variables studied, 
(simultaneously) was used to simultaneously minimize the 
partial errors. A validation test was performed to evaluate the 
predictive capacity of the models and efficiency of the 
methodology studied. Finally, this study allowed us to 
identify the main significant factors, and also to develop 
models and algorithms that estimate and minimize errors of 
vacuum thermoforming parts. 
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2.  EXPERIMENTAL WORK 
2.1.  Material and equipment 

In this work, 2.0 x 2.5 m of white laminated polystyrene 
(PS) sheets with a thickness of 1.0 mm were used to 
manufacture the parts. The plates were cut into 300 x 360 mm 
sheets, cleaned with water and neutral liquid soap (pH), and 
then dried and wrapped in plastic film packages previously 
heated at 50°C and maintained for two hours. 

For the manufacturing of the mold, considering the inherent 
aspects of the manufacturing process and the volume 
contraction of the product of 0.5 % [1], [34], Medium Density 
Fiberboard (MDF) plates were used as the raw material. The 
three-dimensional (3D) design of the model was developed 
using Computer-Aided Design (CAD, SolidWorks® 2008) 
software, which was integrated with Computer-Aided 
Manufacturing (CAM, Edge CAM® 2010) software. The 
mold was machined in a Computer Numeric Control machine 
(CNC, Discovery 560 ROMITM Machining Center), and 
subsequently, the vacuum holes and the final finish were 
performed. Finally, we performed the Computer-Aided 
Inspection (CAI) of the mold in a Coordinate Measuring 
Machine 3D (CMM 3D, Micro-Hite 3D TESATM with 
Reflex Software) to determine the dimensional and geometric 
deviations present in the mold. 

A semi-automated vacuum thermoforming machine was 
developed and automated by the researchers. This equipment 
has the capacity to work with plates of thickness of 0.1 to 
3.0 mm, a useful area of 280 x 340 mm, displacement of the 
mold (z axis) of up to 150 mm, vacuum pumps of 160 mbar 
with motors of 1.0 CV, infrared heating systems composed of 
two resistors of 750 W and 1,000 W, movement by 
pneumatic systems and acquisition of temperature data by 
“K” thermocouples and non-contact infrared. The system is 
programmable through a commercial Personal Computer 
(PC) integrated with microcontroller board (Arduíno UNO 
Revision 3). 

 
2.2.  Parameters and measurement procedure 

There is no consensus among authors [4], [5], [7], [8] about 
the measurement parameters of control and quality in the 
vacuum thermoforming process and still, [1], [4], [9] there is 
no specific measurement procedure or equipment to be used. 
As a result, they were defined and developed to measure the 
errors of the piece. The procedures, scales, measurement 
process and tolerances are described in the following 
paragraphs. 

For measurement errors, 3D MMC was used carrying a 
4 mm diameter solid probe, calibrated with an error of 
± 0.004 mm and CAI software. The reference values for 
dimensions were calculated, based on the final dimensions of 
the mold. Also, according to [3], [9], a deviation of ± 1 % for 
linear dimension and ± 50 % for flatness on surfaces are 
acceptable, and as a reference, the values calculated for 
dimensions were adopted as the general criteria for 
acceptance of sample dimensions. Fig.2. presents the 
geometry of the standard product, where dimensions and 
parameters to be measured in the samples are represented. 

 
 

 
 

Fig.2.  Product standard: dimensions on piece or dimensional 
deviations parameters. 

 

 
 

Fig.3.  Measurement: Planes and references in the sample. 
 
So, the Dimensional Deviation Height (DDHi) or DEV 01 

was defined thus: 
 

57.92)(MHSDEV01  )TSH(MHSDDH iiii −===−=    (1) 
 

where i is the index of the analyzed sample and TSH is the 
Theoretical Sample Height (57.92 mm). The MHSi is the 
Measured Height in the Sample, calculated by the distance 
between two parallel planes formed by the upper and lower 
parts of the sample (Fig.2. and Fig.3.).  
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To determine the planes, 8 points were collected in each 
region using the 3D MMC (Fig.3.) and via CAI software the 
perpendicular distance between the planes was calculated. A 
negative (-) mean value indicates that the height is less than 
the ideal and a positive mean value (+) that it is greater than 
the ideal. 

The Deviation of the Diagonal Length (DDLi) or DEV 02 is 
calculated by the difference between the values of the MLDSi 
and the value of the TDL, being: 

 
)TDL(MLDSDDL ii −=                     (2) 

 
where, MLDSi is the Measured Length of the Diagonal in the 
Sample or DEV 02, which in this work was defined as the 
quadratic relation of the lateral distances of the upper end of 
the sample (length and width) (Fig.2. and Fig.3.) and TDL is 
Theoretical Diagonal Length of the Sample = 207.97 mm, so: 

 
).)) 97207(length(width(DEV02DDL 2

i
2
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To determine lateral distances, 5 points were collected 

along each side of the samples (Fig.3.), and later, via CAI, the 
distances between sides were calculated. A negative (-) mean 
value indicates that the length is smaller than the ideal and a 
positive mean value that it is greater than the ideal. Also, TDL 
is the Theoretical Diagonal Length of the Sample 
(208.0 mm). 

The DEV 03 or Geometric Deviation of Side Angles 
(GDSAi), in this study, is expressed as: 
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where z is the number of sides and s the evaluated face. The 
GDLA is the difference between the Lateral Angle Measured 
on the Face of sample i (LAMFi) and the Theoretic Lateral 
Angle of the Face (TLAF), for s = 1 ... 4, respectively, 95.93º, 
95.93º, 96.02º and 96.06º. To determine each ALMFs, 09 
points were collected on the surface to design the plan of 
control (lateral planes, Fig.2. and Fig.3.). The GDLAi was 
calculated, using CAI software, by the difference between the 
planes of the angles. 

The Geometric Deviation of Flatness (GDi) or DEV 04, that 
will have a zero value (0) for an ideal surface or positive 
values, was calculated as: 

 
0.11)(MGDSDEV03)TGDS(MGDSGD iiii −===−=  (5) 

 
where MGDSi is the Measurement Geometric Deviation of 
the i-th Sample, calculated by measuring 09 points on the 
surface of sample bottom (lower plane, Fig.2. and Fig.3.). 
Later, using CAI software, the distance between the two 
boundary planes of measured surface was calculated. Also, 
this procedure was used to calculate the Theoretical 
Geometric Deviation of the Sample (TGDS), which is 
0.11 mm. 

2.3.  Analysis method 
The Analysis of Variance (ANOVA) method has been 

performed to determine the importance of the process input 
parameters. The ANOVA is a set of statistical methods used 
to analyze data and to investigate implication of the main 
effects and interactions in the response variable. Moreover, it 
provides enough data to compare the parameter levels and the 
significances. [35]. 

Also, to estimate the response variable and evaluate the 
first-order models in A, C, ..., E, along with the AC, ...,  AE 
interaction, the Fractional Factorial Designs [35] technique 
was used. For this, the coefficients of multiple linear 
regression models (MLR) were calculated. The MLR is the 
regression model that contains more than one independent 
variable x, that is, the response variable Y, is related to k input 
variables [29], so: 
 
Y= β0+β1x1+β2x2+…+βjxk+ …+βjx1x2+…+βjxkxk+1 + ε (6) 
 

Finally, Multiple Response Optimization Models (MRO 
models) were developed [29], [32]. For this, the coefficients 
of MLR and statistical analysis data are used for 
computational modeling of the MLR models for each type of 
response variable. Afterwards, the MRO algorithms are 
developed with the MLR models, in order to generalize and 
estimate minimum error values and generate a list of possible 
optimal solutions. The script codes are programmed in the 
MATLAB® numerical analysis and programming software, 
with the techniques of analysis described. 

 
2.4.  Experimental study and analysis of data 

In this research, we used the parameters (factors) described 
by [3] and compatible with the geometry of sample and 
equipment, namely: A. Heating Time (in seconds - s), B. 
Electric heating power (in percentage - %), C. Mold actuator 
power (in Bar and cm/s), D. Vacuum time (s), and E. Vacuum 
Pressure (in millibar - mbar). Table 1. shows the levels - high 
and low and values of parameters. For these selected values, 
test trials were performed to determine the operating value 
(center points) and limits with which the samples could be 
manufactured [7]. 

 
Table 1.  Factors and levels selected for the main experiments. 

 
Level Factors 

 
A 
[s] B [%] C [bar and 

cm/s] 
D 
[s] 

E 
[mbar] 

1 (-1) 80 3.4 
(100%) 18.4 (100%) 7.2 10 

2 (+1) 90 4.0 (85%) 21.6 (85%) 9.0 15 
 

The experiment consisted of 17 treatment combinations 
according to the planning Fractional Factorial Design 2𝑉𝑉5−12 
with one center point [35]. For each treatment, two (2) runs 
were performed in a random sequence being that, 01 sample 
and 01 repetitions were manufactured in the same run, 
totaling 68 runs (4 samples per treatment combinations). The 
68 samples of PS were produced and then cooled completely 
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in an air-conditioned room at 22ºC with 60 % humidity. Then, 
to quantify the linear and geometric errors of the parts, the 
inspection methods described in the previous chapter were 
applied using CMM 3D and the results found were tabulated. 
Table 2. shows the types of deviations and respective mean 
values of 34 samples. It is observed that the data vs. type of 
deviation are well distributed, except for only two (02) points 
for DEV 03, respectively, samples 26 and 31 (outliers in data: 
values below Q1 − 1.5 x IQR or above Q3 + 1.5 x IQR, 
respectively for DEV 03 the interval from -0.415 to 1.345. 
Where: IQR is the Interquartile Range, Q1 first quartile and 
Q2 is third quartile.). 

 
Table 2.  Experimental main results. 

 
Order 
test 

Responses (values) 
DEV 01a 

[mm] 
DEV 02 a 

[mm] 
DEV 03 a 

[º] 
DEV 04 a 

[mm] 
1 -0.122 -0.238 0.358 0.269 
2 -0.628 -0.217 1.050 0.476 
3 -0.464 -0.305 0.238 0.113 
4 -0.463 -0.248 0.213 0.204 
5 -0.467 -0.231 0.294 0.082 
6 -1.565 -0.160 0.910 0.539 
7 -0.229 -0.294 0.270 0.218 
8 -0.490 -0.288 0.204 0.302 
9 -0.323 -0.198 0.418 0.410 
10 -0.943 -0.277 0.281 0.398 
11 -0.463 -0.383 0.288 0.107 
12 -1.000 -0.241 0.451 0.416 
13 -0.989 -0.217 0.301 0.128 
14 -0.328 -0.377 0.265 0.239 
15 -0.597 -0.423 0.110 0.235 
16 -0.492 -0.473 0.279 0.292 
17 -0.563 -0.227 1.150 0.476 
18 -1.431 -0.254 0.955 0.462 
19 -0.645 -0.328 0.502 0.433 
20 -0.576 -0.460 0.213 0.232 
21 -1.234 -0.245 0.805 0.442 
22 -0.794 -0.301 0.457 0.322 
23 -1.022 -0.310 1.106 0.442 
24 -0.639 -0.366 0.531 0.242 
25 -0.757 -0.297 0.230 0.043 
26 -1.306 -0.248 1.551b 0.628 
27 -0.785 -0.317 0.505 0.285 
28 -0.419 -0.358 0.265 0.223 
29 -0.692 -0.407 0.238 0.181 
30 -0.792 -0.466 0.213 0.164 
31 -1.294 -0.279 1.532b 0.642 
32 -0.824 -0.455 0.062 0.221 
33 -1.096 -0.288 0.320 0.477 
34 -0.832 -0.430 0.736 0.231 
 a Mean average value for 02 pieces; b Outlier 

  
 
The ANOVA assumptions were verified and validated 

using analysis of normality assumption (Anderson-Darling), 
assumption of homogeneity of variances (plot of residuals 

versus fitted values) and independence assumption (plot of 
residuals in time sequence) processed by MiniTab 16® 
software, none showed abnormal values. The ANOVA results 
for deviations versus the factors studied are summarized in 
Table 3., or F-test table, with a confidence level of 95 % 
(α = 0.05), and the critical test value for the F distribution 
f0,05;1;17 = 4.45. 

 
 

Table 3.  ANOVA summary table, results for the deviation 
analysis vs. factors in main experiments. 

 
Factor Responses 

DEV 01 DEV 02 DEV 03 DEV 04 

F(0) p-
valor F(0) p-

valor F(0) p-
valor F(0) p-

valor 
A 10.2 0.005 89.7 0.000 77.72 0.000 0.42 0.542 
B 37.0 0.000 82.6 0.000 86.23 0.000 22.5 0.000 
C 0.30 0.592 4.6 0.046 8.93 0.008 1.44 0.246 
D 0.98 0.336 6.43 0.021 56.03 0.000 0.02 0.899 
E 0.08 0.776 4.50 0.049 1.36 0.259 0.34 0.567 
A*B 1.92 0.184 52.1 0.000 43.81 0.000 3.91 0.065 
A*C 4.86 0.042 2.73 0.117 6.24 0.023 0.27 0.612 
A*D 6.13 0.024 1.29 0.271 5.58 0.030 2.27 0.150 
A*E 1.87 0.189 2.63 0.123 2.04 0.171 0.29 0.596 
B*C 5.66 0.029 0.01 0.943 0.42 0.525 5.04 0.038 
B*D 0.05 0.833 6.98 0.017 30.14 0.000 0.12 0.739 
B*E 0.63 0.438 0.08 0.783 2.45 0.136 0.89 0.359 
C*D 0.03 0.867 1.81 0.196 1.54 0.232 0.14 0.709 
C*E 3.02 0.100 2.23 0.154 29.55 0.000 1.12 0.305 
D*E 4.89 0.041 0.37 0.550 0.25 0.817 1.38 0.257 
All: S = 0.0648608; R² = 70.26% and; 𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎)

2 = 42. 28%. 
P-Value by Anderson-Darling test: DEV 01 = 0.235, DEV 02 = 0.100,                
DEV 03 = 0.057 and DEV 04 = 0.123. 
 
From Table 3., it is concluded that the critical 

manufacturing parameters are B and A, and also for DEV 01. 
For DEV 02, the factor B stands out as significant; for DEV 
03, all factors are significant; and in DEV 04, in sequence, the 
most significant factors are B, A, and D.  Also, at least 01 
factor, or its interaction effect, is significant for one error type 
analyzed (except the factor E for Dev 4). 

It is graphically presented in Fig.4.: the interactions of the 
factors vs. the errors using ANOVA. The analysis of the 
graphs confirms that the critical process factors are A and B, 
and that correlation between them is predominantly inverse 
and not proportional. Also, for all deviations, there is 
evidence of interaction between all the factors, and we see 
that there is no direct relationship between the levels (-1 and 
+1) of the factors and lower value of deviations. 

Finally, it can be concluded, by this data analysis, that the 
modification of factor levels cannot be studied in isolation for 
each type of deviation because the optimal levels are different 
for each deviation, for example: for DEV 01 are the +1 levels 
of factors A, B and D combined with the -1 levels of factors 
C and E (+A, +B, -C, +D and -E); for DEV 02, the optimal 
selection would be + A, + B, - C, + D and + E; for DEV 03: 
+A, +B, +C, +D and + E;  and to minimize  DEV 04 are +A, 
-B, -C, -D, and 0 (center point level). 
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a) 

 
b) 

  

 
 

c) d) 
 

Fig.4.  Interactions plot of factors: a) Interactions for DEV 01; b) Interactions for DEV 02;  
c) Interactions for DEV 03;d) Interactions for DEV 04. 

 
3.  DEVELOPMENT OF MULTIPLE RESPONSE OPTIMIZATION 
MODELS BY MULTIPLE LINEAR REGRESSION 

First, with the data analysis developed, Multiple Linear 
Regression Models were developed for each type of response 
variable (error). So, for each one it was calculated: the 
constants 𝛽𝛽0, the regression coefficients 𝛽𝛽𝑗𝑗 , the cross-product 
terms of the input variables taken two to two 𝛽𝛽𝑗𝑗𝑥𝑥𝑘𝑘𝑥𝑥𝑘𝑘+1 , and 
the random error term ɛ. Table 4. presents the calculated 
coefficients for each type of error being MLR model 01 for 
DEV 01, MLR model 02 for DEV 02, and so on, respectively. 
To evaluate the adequacy of these models to the data, we 
calculated the Coefficient of Determination (R2), the Pearson 
Correlation Coefficient (r), the Mean Squared Error (MSE), 
and Mean Absolute Error (MAE), which are presented in the 
table.  It  is evident  by  the  R2  value that capabilities of the 
models to predict the data are higher that 94 %, the r values 
above 0.97 indicate a very strong correlation between the 
response variables of regression models and MSE and MAE, 
which prove that mean values of prediction errors are less 
than 6 %.  

The Multiple Response Optimization Models algorithms 
were developed and implemented using the MLR set as sub-
models. For this purpose, the script sub-codes were 
developed in numerical analysis and programming software 
(MATLAB®), which uses MLRs to develop part of the MRO 
algorithm. The regression models developed for each type of 

error were programmed and the coefficients and constants of 
the estimates were coded and converted into external data 
files. The correlation of outputs of multiple response models 
were tested and evaluated, being that the r values found were 
lower than 0.76. 

Also, to select the set of optimal values of factors by the 
MRO algorithms, a general objective function was developed. 
Equation (7) presents this Oj estimator value used to quantify 
a solution given a set of input factors. 

 
Oj= 1

8
∑ �(𝐷𝐷𝑖𝑖)x Weighti�

4
i=1                      (7) 

for 𝐷𝐷𝑖𝑖 = MLRi, j

admissible errori
 

 
where j represents the j-th coefficient of performance for a 
(01) solution vector and i the deviation type, where i = 1, 2, 
3, and 4 for the deviations DEV 01, DEV 02 DEV 03, and 
DEV 04. Consequently, they are pretested and restrict the 
desired ranges for all deviation of solution for: 0 ≤ MLRi 
< admissible errori. For each test the function Oj assigns 
numbers between 0 and 1, where Oj = 1 is a value completely 
undesirable and Oj = 0 is the optimal value and so, the 
function’s internal search minimizes D values for the target 
values of Di = 0. The values of the “admissible errors” for i = 
1, 2,…4 were defined as | 0.6 mm |, | 2.1 mm |, | 1 mm |, | 0.72º 
| and the i-th weights adopted are: 2, 2, 3 and 1, respectively. 
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Table 4.  Multiple linear regression models: Coefficients of the model parameters. 
 

Parameter Model Type 
MLR for DEV 01 MLR for DEV 01 MLR for DEV 01 MLR for DEV 01 

Coefficient value 
Constant -27. 949777290 9. 868354195 69. 065370830 27. 416482210 
A 0.147198177 -0.127872101 -0.710060972 -0.208447796 
B 0.309674115 -0.064336080 -0.713180139 -0.221828149 
C -0.166175729 -0.047886613 0.131432500 0.007012008 
D 4. 219830150 0.274325867 -0.459804784 -1.188922512 
E -0.992314896 -0.005321494 -0.739571944 -0.250265384 
A*B -0.002028656 0.000906562 0.006966083 0.002162254 
A*D -0.017926562 0.001316982 0.008850926 0.004532616 
A*E 0.007246438 0.001383035 0.002194667 -0.001543027 
A*C 0.001335354 0.000165253 -0.001043778 -0.000311275 
B*D -0.019336285 -0.005722334 -0.000390741 0.001178064 
B*E -0.000626063 -0.000311248 0.005097667 0.003586834 
B*C 0.000775354 0.000287991 0.000180222 -0.000340673 
D* E 0.002764931 -0.001937292 0.014426852 0.004500225 
D*C -0.009421644 0.001797519 -0.005333642 0.006576914 
E*C 0.004313208 -0.000717682 -0.000784556 -0.000218731 
Center point adjustment constant -0.049108594 0.003270649 -0.029714583 -0.007910518 
R²: MLR for DEV 01 = 94,29%; MLR for DEV 02 = 99,99%; MLR for DEV 03 = 99,97%; MLR for DEV 04  = 99,98% and; All models = 98.56%;  
r: MLR for DEV 02 = 0.971; MLR for DEV 02  = 1.000; MLR for DEV 03  = 1.000; MLR for DEV 04  = 1.000 and; All models = 1.000;             
MSE: MLR for DEV 01  = 0,1950; MLR for DEV 02  = 0,0; MLR for DEV 03  = 0,0002; MLR for DEV 04  = 0,0; all models = 0,0488; 
MAE: MLR for DEV 01  = 0,0484; MLR for DEV 02 = 0,0016; MLR for DEV 03  = 0,0149; MLR for DEV 04 = 0,0040; all models = 0,0172. 

 
 
Based on this pre-development, the first code of the 

algorithm, the MRO model 01, was written to find the n-th 
best solutions inside of the full factorial design. The 
algorithm is processed according to this logic: first it 
discretizes the input values (factors) in the j-th possible 
solution and then it uses the data matrix and the sub-code 
developed with the MLR model to calculate the deviations of 
a j-th prediction. Then, by means of (7) the values of the 
general objective functions are calculated and, finally, 
compared, ranked and written in descending order are the n-
th possible solutions with the respective input values. Thus, it 
searches for the minimum value of the general solution vector 
(minimizes Oj). This procedure was developed and 
implemented using MATLAB® software. 

Table 5. presents the 05 best results. From the table it is 
evident that only one (01) set of factors/parameters is 
presented as the best solution to minimize deviations, having 
a value of Oj equal to 0.18, and factors A = 90 s, B = 100 %, 
C = 100 bar, D = 7.2 s and E = 15 mbar. 

 
Table 5.  Summary of the 05 best minimum of Oj value for the 

1st variation of the optimization algorithm. 
 

Oj value 
  

Factor  
A (s) B (%) C (bar) D (s) E (mbar) 

0.18 90 100 100 7. 2 15.0 
0.25 90 100 100 7. 2 12. 5 
0.27 90 100 93 7. 2 15.0 
0.27 81 100 85 9.0 10.0 
0.28 90 100 100 8. 1 15.0 

 

A second attempt was made to find optimal solutions. For 
this the solution space of the input variables was expanded to 
values beyond those used in the main experimental 
procedure, and also, smaller limits were defined for the 
discretization. For this new search the MRO model 02 
Algorithm was programmed. Table 6. presents the 05 best 
results.  

As shown in Table 6., the MRO model 02 algorithm can 
predict other n-th configurations of input variables, which 
minimize the Oj estimator. We see that several configurations 
have the same value of Oj and very close values, which were 
already predicted when dealing with a problem with multiple 
solution spaces. However, analyzing Fig.4., we see that in 
general, for the set of deviations, factor “A” has better results 
in levels ≥ 85, factor “B” in levels ≥ 95, since factor “C” 
improves next at levels ≤ 92.5, factor “D” at mean levels 
≥ 8.1, and factor “E” close to level ≥ 12.5. From this follows 
that the first solution from Table 6. is the most appropriate 
solution to the problem. 

 
Table 6.  Summary of the 05 best minimum of Oj value for the 2nd 

variation of the optimization algorithm. 
 

Oj value 
  

Factor  
A (s) B (%) C (bar) D (s) E (mbar) 

0.05 94. 5 97. 5 92. 5 6. 3 15 
0.06 94. 5 95 96. 25 6. 3 15 
0.06 94. 5 95 100 7. 2 15 
0.08 81 105 92. 5 7. 2 7. 5 
0.08 78. 75 105 92. 5 7. 2 7. 5 
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3.1.  Validation tests 
New experimental tests were performed to validate the 

MRO algorithms and to test their efficiencies in predicting 
the multiple errors in two different search conditions 
developed. For the development of these validation tests, two 
test sequences were performed, using five samples of each 
type, according to the selection of factors (parameters) 
developed, respectively. Also, the same experimental 
conditions, infrastructure and material were preserved. 
Afterwards, the samples were inspected, adopting the same 
procedures already described and the errors previously 
calculated. Table 7. and Table 8. show the errors measured in 
the pieces for each test model. 

 
Table 7.  Deviations: samples of 1st MRO model. 

 
Sample Results 

DEV 1 
 (mm) 

DEV 2 
 (mm) 

DEV 3 
 (º) 

DEV 4  
(mm) 

1st -0.269 0.240 0.201 -0.521 
2nd -0.367 0.215 0.308 -0.536 
3nd -0.113 0.108 0.259 -0.423 
4nd -0.084 0.246 0.114 -0.460 
5nd -0.272 0.142 0.169 -0.520 

 
Table 8.  Deviations: samples of 2nd MRO model. 

 
Sample Results 

DEV 1 
 (mm) 

DEV 2 
 (mm) 

DEV 3 
 (º) 

DEV 4  
(mm) 

1st -0.138 0.260 0.154 -0.308 
2nd -0.084 0.217 0.221 -0.287 
3nd -0.092 0.194 0.115 -0.406 
4nd -0.122 0.164 0.129 -0.342 
5nd -0.302 0.107 0.106 -0.339 

 
As evidenced by the values of the tables, the tests produced 

parts within the tolerance limits defined in this study; even 
the lower and upper limits of the deviations were at 
acceptable levels. The values of the errors are shown in Fig.5. 
For comparative purposes, the data of the best performing test 
pair (01 and 11) are shown with A = 90 s, B = 100 %, 
C = 90 Bar, D = 7,2 s and D = 10 mBar. 

As shown in Fig.5., even at different levels, all the 
deviations follow the same trend, independently of the 
optimal configurations of the models. Also, we see that, on 
average, the results of the MRO model 02 samples present 
errors in smaller values when compared with the parts 
produced with the parameters of the MRO model 01, and in 
general, a significant improvement when compared with the 
best samples of the experimental test. 

To compare the efficiency of the predictions, Table 9. and 
Table 10. present the results of the expected value (or mean) 
of the deviations for samples in the validation tests, at the 
95 % confidence interval (IC) on the mean (α = 0.05). The 
predictions of the models and also the results of the best 
samples in the main experimental tests, samples 01 and 11, 
are shown (Table 2.). 

 
 

Fig.5.  Comparison of mean value of the errors in the samples. 
 
Table 9.  General comparative of results for the 1st MRO model. 

 
Error 
type 

Samples of validation MRO 
model 01 

Samples 
nº01 and 

nº 11 
Mean 95% CI predicted Mean 

DEV 01 -0.221 -0.117 -0.325 -0.075 -0.293 
DEV 02 0.190 0.136 0.244 0.273 0.323 
DEV 03 0.210 0.144 0.276 0.084 0.188 
DEV 04 -0.492 -0.449 -0.534 -0.297 -0.310 

 

Oj 0.26 0.18 0.34 0.18 0.31 
 

Table 10.  General comparative of results for the 2nd MRO model. 
 

Error 
type 

Samples of validation MRO 
model 01 

Samples 
nº01 and 

nº 11 
Mean 95% CI predicted Mean 

DEV 01 -0.148 -0.070 -0.226 -0.006 -0.293 
DEV 02 0.188 0.138 0.238 0.029 0.323 
DEV 03 0.145 0.104 0.185 0.055 0.188 
DEV 04 -0.336 -0.297 -0.376 -0.230 -0.310 

 

Oj 0.20 0.13 0.26 0.05 0.31 
 
Finally, based on these results, we conclude that the 

validation tests produced samples within the tolerance limits 
defined in this study with a significant improvement in 
product quality. 
 
4.  DISCUSSION AND CONCLUSIONS 

The proposed procedure can be considered a new method to 
mutually model the manufacturing parameters and to predict 
and minimize dimensional and geometric errors in products 
during the vacuum thermoforming process, using a small 
number of tests in a laboratory. 

As already presented by other authors [7], [8], [11], [30], 
[26], the simultaneous analysis of parameters and errors of 
products does not allow us to select a single set of optimal 
values. This is because different levels of one factor could be 
optimal levels for different response variables (e.g., factor E). 
Consequently, it is necessary to use a multi-objective 
optimization technique to find the set of optimal levels for the 
problem. 
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The analysis of the interaction between product errors and 
parameters of manufacture presented us new information, 
such as: 
• The parameters of heating influence all types of 

geometrical and dimensional errors in a more significant 
way, considering all their different levels. 

• In addition to mold characteristics [15], [36] the 
parameters of mold can influence geometric errors; 

• The interaction of two factors can influence the deviations 
of the product by reducing the value of dimensional 
errors, but a significant increase of geometric errors can 
occur; 

• The manufacturing parameters interact simultaneously 
with the errors in a non-linear and non-proportional 
model; 
In the analysis of the deviation value as a function of the 
variation of factor levels, we can conclude that: 

• The factors “Heating Time” and “Heating Power” at high 
levels result in smaller dimensional deviations of height 
and lateral angles; 

• In relation to the reduction of deviations the parameters 
“Vacuum Time” and “Vacuum Pressure” for some 
deviations have direct correlation and to others, inversely, 
“Vacuum Time” and “Mold Pressure” have direct 
correlation in all deviations; 

• The parameter “heating time” in value equal to or greater 
than 90 seconds, produces smaller deviation values. 

• In general, among the analyzed factors, the “Mold 
Pressure” has the lowest ratio rate in its levels and, for the 
“DEV 02”, the factors have an inverse correlation 
behavior in relation to the other deviations. 

As for the MLR models, it can be concluded from the R2 
values that they are valid to represent the sample data and that 
this technique is valid to model errors in this process. 

From Table 9. and Table 10., we conclude that within the 
confidence interval, the implemented models have indeed 
been able to find new improved solutions and have a 
significant gain in the overall reduction of errors of validation 
test and of value of objective function. 

The MRO models have been able to find a set of n-th 
possible solutions that altogether minimize errors and these 
solutions are in values outside the limits of test of the main 
experiment. 

In addition, by the analysis of Fig.5. and Table 9. and 
Table 10., we conclude that the minimization solution found 
by the optimization of model 02 is the best configuration of 
factor levels for the problem. 

However, as shown in Table 10., there were failures in the 
predicted values in the new range of values [7], and from this 
we conclude that the solutions of optimization models for the 
errors are neither linear nor curved in the surface model. 
Thus, when using a linear model (MLR) with center point to 
model an (01) error, we obtain a representative model in 
relation to slope and direction [27], but this model is not able 
to represent all the local minima and the global minimum of 
a solution surface in this problem. 
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